TU Darmstadt / ULB / TUbiblio

A tensor model for calibration and imaging with air-coupled ultrasonic sensor arrays

Müller, Raphael ; Allevato, Gianni ; Rutsch, Matthias ; Haugwitz, Christoph ; Kupnik, Mario ; Pesavento, Marius (2024)
A tensor model for calibration and imaging with air-coupled ultrasonic sensor arrays.
doi: 10.48550/arXiv.2406.14355
Report, Bibliographie

Kurzbeschreibung (Abstract)

Arrays of ultrasonic sensors are capable of 3D imaging in air and an affordable supplement to other sensing modalities, such as radar, lidar, and camera, i.e. in heterogeneous sensing systems. However, manufacturing tolerances of air-coupled ultrasonic sensors may lead to amplitude and phase deviations. Together with artifacts from imperfect knowledge of the array geometry, there are numerous factors that can impair the imaging performance of an array. We propose a reference-based calibration method to overcome possible limitations. First, we introduce a novel tensor signal model to capture the characteristics of piezoelectric ultrasonic transducers (PUTs) and the underlying multidimensional nature of a multiple-input multiple-output (MIMO) sensor array. Second, we formulate an optimization problem based on the proposed tensor model to obtain the calibrated parameters of the array and solve the problem using a modified block coordinate descent (BCD) method. Third, we assess both our model and the commonly used analytical model using real data from a 3D imaging experiment. The experiment reveals that our array response model we learned with calibration data yields an imaging performance similar to that of the analytical array model, which requires perfect array geometry information.

Typ des Eintrags: Report
Erschienen: 2024
Autor(en): Müller, Raphael ; Allevato, Gianni ; Rutsch, Matthias ; Haugwitz, Christoph ; Kupnik, Mario ; Pesavento, Marius
Art des Eintrags: Bibliographie
Titel: A tensor model for calibration and imaging with air-coupled ultrasonic sensor arrays
Sprache: Englisch
Publikationsjahr: 20 Juni 2024
Verlag: arXiv
Reihe: Signal Processing
Auflage: 1. Version
DOI: 10.48550/arXiv.2406.14355
URL / URN: https://arxiv.org/abs/2406.14355
Kurzbeschreibung (Abstract):

Arrays of ultrasonic sensors are capable of 3D imaging in air and an affordable supplement to other sensing modalities, such as radar, lidar, and camera, i.e. in heterogeneous sensing systems. However, manufacturing tolerances of air-coupled ultrasonic sensors may lead to amplitude and phase deviations. Together with artifacts from imperfect knowledge of the array geometry, there are numerous factors that can impair the imaging performance of an array. We propose a reference-based calibration method to overcome possible limitations. First, we introduce a novel tensor signal model to capture the characteristics of piezoelectric ultrasonic transducers (PUTs) and the underlying multidimensional nature of a multiple-input multiple-output (MIMO) sensor array. Second, we formulate an optimization problem based on the proposed tensor model to obtain the calibrated parameters of the array and solve the problem using a modified block coordinate descent (BCD) method. Third, we assess both our model and the commonly used analytical model using real data from a 3D imaging experiment. The experiment reveals that our array response model we learned with calibration data yields an imaging performance similar to that of the analytical array model, which requires perfect array geometry information.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
Hinterlegungsdatum: 17 Dez 2024 12:21
Letzte Änderung: 17 Dez 2024 12:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen