TU Darmstadt / ULB / TUbiblio

Boosting coercivity of 3D printed hard magnets through nano-modification of the powder feedstock

Gabriel, Philipp ; Varatharaja, Nallathambi ; Liu, Jianing ; Staab, Franziska ; Timileyin, David Oyedeji ; Yangyiwei, Yang ; Hantke, Nick ; Adabifiroozjaei, Esmaeil ; Recalde-Benitez, Oscar ; Molina-Luna, Leopoldo ; Ziyuan, Rao ; Gault, Baptiste ; Sehrt, Jan T. ; Scheibel, Franziska ; Skokov, Konstantin P. ; Xu, Bai-Xiang ; Durst, Karsten ; Gutfleisch, Oliver ; Barcikowski, Stephan ; Ziefuss, Anna Rosa (2024)
Boosting coercivity of 3D printed hard magnets through nano-modification of the powder feedstock.
In: Advanced Science
doi: 10.1002/advs.202407972
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The demand for strong, compact permanent magnets essential for the energy transition drives innovation in magnet manufacturing. Additive manufacturing, particularly Powder Bed Fusion of metals using a laser beam (PBF-LB/M), offers potential for near-net-shaped Nd-Fe-B permanent magnets but often falls short compared to conventional methods. A less explored strategy to enhance these magnets is feedstock modification with nanoparticles. It is demonstrated that modifying a Nd-Fe-B-based feedstock with 1 wt.% Ag nanoparticles boost the coercivity of the magnets to a record value of 935 ± 6 kA m−1 without further post-processing or heat treatments. Suitable volumetric energy densities for the PBF-LB/M process are determined using finite element simulations predicting melt pool behavior and part density. Microstructural analyses reveal finer grain sizes and more equiaxed nanocrystalline structures due to the modification. Atom probe tomography identifies three phases in the Ag-modified samples, with Ag forming nanophase regions with rare-earth elements near the amorphous Zr-Ti-B-rich intergranular phase, potentially decoupling the Nd2Fe14B primary phase. The study shows that superior magnetic properties primarily result from microstructure modification rather than part density. These findings highlight inventive material design approaches via feedstock surface modification to achieve superior magnetic performance in additively manufactured Nd-Fe-B magnets.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Gabriel, Philipp ; Varatharaja, Nallathambi ; Liu, Jianing ; Staab, Franziska ; Timileyin, David Oyedeji ; Yangyiwei, Yang ; Hantke, Nick ; Adabifiroozjaei, Esmaeil ; Recalde-Benitez, Oscar ; Molina-Luna, Leopoldo ; Ziyuan, Rao ; Gault, Baptiste ; Sehrt, Jan T. ; Scheibel, Franziska ; Skokov, Konstantin P. ; Xu, Bai-Xiang ; Durst, Karsten ; Gutfleisch, Oliver ; Barcikowski, Stephan ; Ziefuss, Anna Rosa
Art des Eintrags: Bibliographie
Titel: Boosting coercivity of 3D printed hard magnets through nano-modification of the powder feedstock
Sprache: Englisch
Publikationsjahr: 13 Juli 2024
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Kollation: 12 Seiten
DOI: 10.1002/advs.202407972
Kurzbeschreibung (Abstract):

The demand for strong, compact permanent magnets essential for the energy transition drives innovation in magnet manufacturing. Additive manufacturing, particularly Powder Bed Fusion of metals using a laser beam (PBF-LB/M), offers potential for near-net-shaped Nd-Fe-B permanent magnets but often falls short compared to conventional methods. A less explored strategy to enhance these magnets is feedstock modification with nanoparticles. It is demonstrated that modifying a Nd-Fe-B-based feedstock with 1 wt.% Ag nanoparticles boost the coercivity of the magnets to a record value of 935 ± 6 kA m−1 without further post-processing or heat treatments. Suitable volumetric energy densities for the PBF-LB/M process are determined using finite element simulations predicting melt pool behavior and part density. Microstructural analyses reveal finer grain sizes and more equiaxed nanocrystalline structures due to the modification. Atom probe tomography identifies three phases in the Ag-modified samples, with Ag forming nanophase regions with rare-earth elements near the amorphous Zr-Ti-B-rich intergranular phase, potentially decoupling the Nd2Fe14B primary phase. The study shows that superior magnetic properties primarily result from microstructure modification rather than part density. These findings highlight inventive material design approaches via feedstock surface modification to achieve superior magnetic performance in additively manufactured Nd-Fe-B magnets.

ID-Nummer: Artikel-ID: 2407972
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 25 Okt 2024 11:42
Letzte Änderung: 28 Okt 2024 06:44
PPN: 522490840
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen