Riedel, Henrik ; Bohmann, Leon ; Bagusat, Frank ; Martin, Sauer ; Schuster, Miriam ; Seel, Matthias (2024)
Crack segmentation for high-speed imaging: detection of fractures in thermally toughened glass.
In: Glass Structures & Engineering, 9
doi: 10.1007/s40940-024-00252-5
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Fracture morphology characterization in broken glass panes is crucial for designing laminated safety glass (LSG) in civil engineering. Verifying completely broken LSG systems requires destructive sampling, increasing costs and hindering development. Therefore, to determine the residual load-bearing capacity, the link between the pre-fracture characteristics and the fracture morphology must be known. However, when the crack propagation needs to be directly captured with high-speed imaging, conventional methods are no longer sufficient for detecting cracks. To enable such investigations, we propose a novel machine learning framework for crack segmentation in high-speed imaging that addresses the complexity of glass fracture and minimises the required labour costs. In this study, the crack propagation of a sample was recorded and analysed at 2,000,000 images per second. The results showcase accuracies surpassing 97% while requiring only two labeled images for training, thus streamlining practical implementation. Furthermore, we show the method's robustness to the extent that hyperparameter tuning becomes unnecessary. Instead, we offer guidelines for selecting the most crucial hyperparameters depending on the problem. Our method offers a promising approach for non-linear temporal interpolation of noisy images, with implications for various applications extending beyond glass fracture analysis.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Riedel, Henrik ; Bohmann, Leon ; Bagusat, Frank ; Martin, Sauer ; Schuster, Miriam ; Seel, Matthias |
Art des Eintrags: | Bibliographie |
Titel: | Crack segmentation for high-speed imaging: detection of fractures in thermally toughened glass |
Sprache: | Englisch |
Publikationsjahr: | 1 Juni 2024 |
Ort: | [Cham] |
Verlag: | Springer International Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Glass Structures & Engineering |
Jahrgang/Volume einer Zeitschrift: | 9 |
DOI: | 10.1007/s40940-024-00252-5 |
Kurzbeschreibung (Abstract): | Fracture morphology characterization in broken glass panes is crucial for designing laminated safety glass (LSG) in civil engineering. Verifying completely broken LSG systems requires destructive sampling, increasing costs and hindering development. Therefore, to determine the residual load-bearing capacity, the link between the pre-fracture characteristics and the fracture morphology must be known. However, when the crack propagation needs to be directly captured with high-speed imaging, conventional methods are no longer sufficient for detecting cracks. To enable such investigations, we propose a novel machine learning framework for crack segmentation in high-speed imaging that addresses the complexity of glass fracture and minimises the required labour costs. In this study, the crack propagation of a sample was recorded and analysed at 2,000,000 images per second. The results showcase accuracies surpassing 97% while requiring only two labeled images for training, thus streamlining practical implementation. Furthermore, we show the method's robustness to the extent that hyperparameter tuning becomes unnecessary. Instead, we offer guidelines for selecting the most crucial hyperparameters depending on the problem. Our method offers a promising approach for non-linear temporal interpolation of noisy images, with implications for various applications extending beyond glass fracture analysis. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion > Fachgebiet Fassadentechnik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion > Fachgebiet Statik |
Hinterlegungsdatum: | 14 Okt 2024 10:49 |
Letzte Änderung: | 16 Okt 2024 07:58 |
PPN: | 522200087 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |