TU Darmstadt / ULB / TUbiblio

Influence of an Automated Vehicle with Predictive Longitudinal Control on Mixed Urban Traffic Using SUMO

Heckelmann, Paul ; Rinderknecht, Stephan (2024)
Influence of an Automated Vehicle with Predictive Longitudinal Control on Mixed Urban Traffic Using SUMO.
In: World Electric Vehicle Journal, 15 (10)
doi: 10.3390/wevj15100448
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, an approach to quantify the area of influence of an intelligent longitudinally controlled autonomous vehicle in an urban, mixed-traffic environment is proposed. The intelligent vehicle is executed with a predictive longitudinal control, which anticipates the future traffic scenario in order to reduce unnecessary acceleration. The shown investigations are conducted within a simulated traffic environment of the city center of Darmstadt, Germany, which is carried out in the traffic simulation software “Simulation of Urban Mobility” (SUMO). The longitudinal dynamics of the not automated vehicles are considered with the Extended Intelligent Driver Model, which is an approach to simulate real human driver behavior. The results show that, in addition to the energy saving caused by a predictive longitudinal control of the ego vehicle, this system can also reduce the consumption of surrounding traffic participants significantly. The area of influence can be quantified to four vehicles and up to 250 m behind.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Heckelmann, Paul ; Rinderknecht, Stephan
Art des Eintrags: Bibliographie
Titel: Influence of an Automated Vehicle with Predictive Longitudinal Control on Mixed Urban Traffic Using SUMO
Sprache: Englisch
Publikationsjahr: 30 September 2024
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: World Electric Vehicle Journal
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 10
Kollation: 11 Seiten
DOI: 10.3390/wevj15100448
URL / URN: https://www.mdpi.com/2032-6653/15/10/448
Kurzbeschreibung (Abstract):

In this paper, an approach to quantify the area of influence of an intelligent longitudinally controlled autonomous vehicle in an urban, mixed-traffic environment is proposed. The intelligent vehicle is executed with a predictive longitudinal control, which anticipates the future traffic scenario in order to reduce unnecessary acceleration. The shown investigations are conducted within a simulated traffic environment of the city center of Darmstadt, Germany, which is carried out in the traffic simulation software “Simulation of Urban Mobility” (SUMO). The longitudinal dynamics of the not automated vehicles are considered with the Extended Intelligent Driver Model, which is an approach to simulate real human driver behavior. The results show that, in addition to the energy saving caused by a predictive longitudinal control of the ego vehicle, this system can also reduce the consumption of surrounding traffic participants significantly. The area of influence can be quantified to four vehicles and up to 250 m behind.

Freie Schlagworte: longitudinal control, V2X, realistic microscopic traffic simulation, urban traffic, electric vehicles, mixed traffic
Zusätzliche Informationen:

This article belongs to the Special Issue Vehicle Safe Motion in Mixed Vehicle Technologies Environment

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Mechatronische Systeme im Maschinenbau (IMS)
Hinterlegungsdatum: 04 Okt 2024 08:51
Letzte Änderung: 04 Okt 2024 08:51
PPN: 52189400X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen