Becker, Hagen ; Garcia-Agundez, Augusto ; Müller, Philipp Niklas ; Tregel, Thomas ; Miede, André ; Göbel, Stefan (2024)
Predicting functional performance via classification of lower extremity strength in older adults with exergame-collected data.
In: Journal of NeuroEngineering and Rehabilitation, 2020, 17 (1)
doi: 10.26083/tuprints-00023420
Artikel, Zweitveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
Objective: The goal of this article is to present and to evaluate a sensor-based functional performance monitoring system. The system consists of an array of Wii Balance Boards (WBB) and an exergame that estimates whether the player can maintain physical independence, comparing the results with the 30 s Chair-Stand Test (30CST).
Methods: Sixteen participants recruited at a nursing home performed the 30CST and then played the exergame described here as often as desired during a period of 2 weeks. For each session, features related to walking and standing on the WBBs while playing the exergame were collected. Different classifier algorithms were used to predict the result of the 30CST on a binary basis as able or unable to maintain physical independence.
Results: By using a Logistic Model Tree, we achieved a maximum accuracy of 91% when estimating whether player’s 30CST scores were over or under a threshold of 12 points, our findings suggest that predicting age- and sex-adjusted cutoff scores is feasible.
Conclusion: An array of WBBs seems to be a viable solution to estimate lower extremity strength and thereby functional performance in a non-invasive and continuous manner. This study provides proof of concept supporting the use of exergames to identify and monitor elderly subjects at risk of losing physical independence.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Becker, Hagen ; Garcia-Agundez, Augusto ; Müller, Philipp Niklas ; Tregel, Thomas ; Miede, André ; Göbel, Stefan |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Predicting functional performance via classification of lower extremity strength in older adults with exergame-collected data |
Sprache: | Englisch |
Publikationsjahr: | 24 September 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 10 Dezember 2020 |
Ort der Erstveröffentlichung: | London |
Verlag: | BioMed Central |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of NeuroEngineering and Rehabilitation |
Jahrgang/Volume einer Zeitschrift: | 17 |
(Heft-)Nummer: | 1 |
Kollation: | 8 Seiten |
DOI: | 10.26083/tuprints-00023420 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/23420 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Objective: The goal of this article is to present and to evaluate a sensor-based functional performance monitoring system. The system consists of an array of Wii Balance Boards (WBB) and an exergame that estimates whether the player can maintain physical independence, comparing the results with the 30 s Chair-Stand Test (30CST). Methods: Sixteen participants recruited at a nursing home performed the 30CST and then played the exergame described here as often as desired during a period of 2 weeks. For each session, features related to walking and standing on the WBBs while playing the exergame were collected. Different classifier algorithms were used to predict the result of the 30CST on a binary basis as able or unable to maintain physical independence. Results: By using a Logistic Model Tree, we achieved a maximum accuracy of 91% when estimating whether player’s 30CST scores were over or under a threshold of 12 points, our findings suggest that predicting age- and sex-adjusted cutoff scores is feasible. Conclusion: An array of WBBs seems to be a viable solution to estimate lower extremity strength and thereby functional performance in a non-invasive and continuous manner. This study provides proof of concept supporting the use of exergames to identify and monitor elderly subjects at risk of losing physical independence. |
Freie Schlagworte: | Wii Balance Board, Physical independence, Balance, Exergames, Serious games |
ID-Nummer: | Artikel-ID: 164 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-234202 |
Zusätzliche Informationen: | Part of Springer Nature |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation |
Hinterlegungsdatum: | 24 Sep 2024 11:32 |
Letzte Änderung: | 27 Sep 2024 09:25 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |