TU Darmstadt / ULB / TUbiblio

Micro‐/nanostructure evolution of C/SiFeO(N,C) polymer‐derived ceramic papers pyrolyzed in a reactive ammonia atmosphere

Peter, Johannes Mauricio ; Ott, Alexander ; Riedel, Ralf ; Ionescu, Emanuel ; Kleebe, Hans‐Joachim (2024)
Micro‐/nanostructure evolution of C/SiFeO(N,C) polymer‐derived ceramic papers pyrolyzed in a reactive ammonia atmosphere.
In: Journal of the American Ceramic Society, 2022, 105 (3)
doi: 10.26083/tuprints-00026642
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

SiFeO(N,C)-based ceramic papers were prepared via a one-pot synthesis approach by dip-coating a cellulose-based paper template with a polymeric perhydropolysilazane precursor modified with iron(III)acetylacetonate. The preceramic composites were subsequently pyrolyzed in ammonia atmosphere at 500, 700, and 1000°C, respectively, and the characteristics of the three resulting ceramic papers were comparatively investigated.

Scanning electron microscopy revealed that in each sample, the morphology of the template is successfully transferred on the ceramic system, with the cellulose-derived fibers being converted to elemental carbon encased by a SiFeO(N,C) coating. Electron transparent cross-sectional samples for transmission electron microscopy (TEM) were prepared from the ceramic papers, employing a standard ultramicrotomy slice cutting procedure, allowing for a detailed characterization of their in situ generated micro-/nanostructure as well as occurring crystalline phases.

TEM imaging and diffraction revealed that depending on pyrolysis temperature a different microstructure with a distinct phase assemblage is generated in the polymer-derived ceramic papers. Crystallization from the polymer precursor starts with the precipitation of wüstite (Fe(1-x)O) nanoparticles at 700°C inside the ceramic coating and secondary ε-FexN at the fiber-coating interface. Upon pyrolysis at 1000°C however, the sample primarily accommodates metallic α-iron nanocrystals that impart ferromagnetic characteristics to the ceramic paper.

The results show that the template-assisted polymer-derived ceramic route is a feasible approach in the production of complex ceramic compounds with fibrous paper-like morphology. By adjusting the pyrolysis temperature, microstructure and phase composition of the ceramic paper can be conveniently tailored to the needs of its respective application.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Peter, Johannes Mauricio ; Ott, Alexander ; Riedel, Ralf ; Ionescu, Emanuel ; Kleebe, Hans‐Joachim
Art des Eintrags: Zweitveröffentlichung
Titel: Micro‐/nanostructure evolution of C/SiFeO(N,C) polymer‐derived ceramic papers pyrolyzed in a reactive ammonia atmosphere
Sprache: Englisch
Publikationsjahr: 10 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Ort der Erstveröffentlichung: Oxford [u.a.]
Verlag: American Ceramic Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 105
(Heft-)Nummer: 3
Kollation: 15 Seiten
DOI: 10.26083/tuprints-00026642
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26642
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

SiFeO(N,C)-based ceramic papers were prepared via a one-pot synthesis approach by dip-coating a cellulose-based paper template with a polymeric perhydropolysilazane precursor modified with iron(III)acetylacetonate. The preceramic composites were subsequently pyrolyzed in ammonia atmosphere at 500, 700, and 1000°C, respectively, and the characteristics of the three resulting ceramic papers were comparatively investigated.

Scanning electron microscopy revealed that in each sample, the morphology of the template is successfully transferred on the ceramic system, with the cellulose-derived fibers being converted to elemental carbon encased by a SiFeO(N,C) coating. Electron transparent cross-sectional samples for transmission electron microscopy (TEM) were prepared from the ceramic papers, employing a standard ultramicrotomy slice cutting procedure, allowing for a detailed characterization of their in situ generated micro-/nanostructure as well as occurring crystalline phases.

TEM imaging and diffraction revealed that depending on pyrolysis temperature a different microstructure with a distinct phase assemblage is generated in the polymer-derived ceramic papers. Crystallization from the polymer precursor starts with the precipitation of wüstite (Fe(1-x)O) nanoparticles at 700°C inside the ceramic coating and secondary ε-FexN at the fiber-coating interface. Upon pyrolysis at 1000°C however, the sample primarily accommodates metallic α-iron nanocrystals that impart ferromagnetic characteristics to the ceramic paper.

The results show that the template-assisted polymer-derived ceramic route is a feasible approach in the production of complex ceramic compounds with fibrous paper-like morphology. By adjusting the pyrolysis temperature, microstructure and phase composition of the ceramic paper can be conveniently tailored to the needs of its respective application.

Freie Schlagworte: nanocomposites, polymer precursor, pyrolysis, transmission electron microscopy, carbon
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-266424
Zusätzliche Informationen:

Funding information: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). Grant Number: 411442613

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
Hinterlegungsdatum: 10 Sep 2024 07:25
Letzte Änderung: 11 Sep 2024 08:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen