TU Darmstadt / ULB / TUbiblio

Acousto-optic modulation of gigawatt-scale laser pulses in ambient air

Schrödel, Yannick ; Hartmann, Claas ; Zheng, Jiaan ; Lang, Tino ; Streudel, Max ; Rutsch, Matthias ; Salman, Sarper H. ; Kellert, Martin ; Pergament, Mikhail ; Hahn-Jose, Thomas ; Suppelt, Sven ; Dörsam, Jan Helge ; Harth, Anne ; Leemans, Wim P. ; Kärtner, Franz X. ; Hartl, Ingmar ; Kupnik, Mario ; Heyl, Christoph M. (2024)
Acousto-optic modulation of gigawatt-scale laser pulses in ambient air.
In: Nature Photonics, 2023, 18
doi: 10.26083/tuprints-00027700
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Schrödel, Yannick ; Hartmann, Claas ; Zheng, Jiaan ; Lang, Tino ; Streudel, Max ; Rutsch, Matthias ; Salman, Sarper H. ; Kellert, Martin ; Pergament, Mikhail ; Hahn-Jose, Thomas ; Suppelt, Sven ; Dörsam, Jan Helge ; Harth, Anne ; Leemans, Wim P. ; Kärtner, Franz X. ; Hartl, Ingmar ; Kupnik, Mario ; Heyl, Christoph M.
Art des Eintrags: Zweitveröffentlichung
Titel: Acousto-optic modulation of gigawatt-scale laser pulses in ambient air
Sprache: Englisch
Publikationsjahr: 10 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2 Oktober 2023
Ort der Erstveröffentlichung: London
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Photonics
Jahrgang/Volume einer Zeitschrift: 18
DOI: 10.26083/tuprints-00027700
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27700
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions.

Freie Schlagworte: Optical techniques, Ultrafast lasers, Ultrafast photonics
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-277001
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik
Hinterlegungsdatum: 10 Sep 2024 12:48
Letzte Änderung: 11 Sep 2024 09:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen