TU Darmstadt / ULB / TUbiblio

Local Deformation of Glasses is Mediated by Rigidity Fluctuation on Nanometer Scale

Benzine, Omar ; Bruns, Sebastian ; Pan, Zhiwen ; Durst, Karsten ; Wondraczek, Lothar (2024)
Local Deformation of Glasses is Mediated by Rigidity Fluctuation on Nanometer Scale.
In: Advanced Science, 2018, 5 (10)
doi: 10.26083/tuprints-00027260
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Microscopic deformation processes determine defect formation on glass surfaces and, thus, the material's resistance to mechanical failure. While the macroscopic strength of most glasses is not directly dependent on material composition, local deformation and flaw initiation are strongly affected by chemistry and atomic arrangement. Aside from empirical insight, however, the structural origin of the fundamental deformation modes remains largely unknown. Experimental methods that probe parameters on short or intermediate length-scale such as atom–atom or superstructural correlations are typically applied in the absence of alternatives. Drawing on recent experimental advances, spatially resolved Raman spectroscopy is now used in the THz-gap for mapping local changes in the low-frequency vibrational density of states. From direct observation of deformation-induced variations on the characteristic length-scale of molecular heterogeneity, it is revealed that rigidity fluctuation mediates the deformation process of inorganic glasses. Molecular field approximations, which are based solely on the observation of short-range (interatomic) interactions, fail in the prediction of mechanical behavior. Instead, glasses appear to respond to local mechanical contact in a way that is similar to that of granular media with high intergranular cohesion.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Benzine, Omar ; Bruns, Sebastian ; Pan, Zhiwen ; Durst, Karsten ; Wondraczek, Lothar
Art des Eintrags: Zweitveröffentlichung
Titel: Local Deformation of Glasses is Mediated by Rigidity Fluctuation on Nanometer Scale
Sprache: Englisch
Publikationsjahr: 9 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2018
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 10
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00027260
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27260
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Microscopic deformation processes determine defect formation on glass surfaces and, thus, the material's resistance to mechanical failure. While the macroscopic strength of most glasses is not directly dependent on material composition, local deformation and flaw initiation are strongly affected by chemistry and atomic arrangement. Aside from empirical insight, however, the structural origin of the fundamental deformation modes remains largely unknown. Experimental methods that probe parameters on short or intermediate length-scale such as atom–atom or superstructural correlations are typically applied in the absence of alternatives. Drawing on recent experimental advances, spatially resolved Raman spectroscopy is now used in the THz-gap for mapping local changes in the low-frequency vibrational density of states. From direct observation of deformation-induced variations on the characteristic length-scale of molecular heterogeneity, it is revealed that rigidity fluctuation mediates the deformation process of inorganic glasses. Molecular field approximations, which are based solely on the observation of short-range (interatomic) interactions, fail in the prediction of mechanical behavior. Instead, glasses appear to respond to local mechanical contact in a way that is similar to that of granular media with high intergranular cohesion.

ID-Nummer: Artikel-ID: 1800916
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-272600
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 09 Sep 2024 09:54
Letzte Änderung: 10 Sep 2024 05:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen