TU Darmstadt / ULB / TUbiblio

Well-posedness analysis of multicomponent incompressible flow models

Bothe, Dieter ; Druet, Pierre-Etienne (2021)
Well-posedness analysis of multicomponent incompressible flow models.
In: Journal of Evolution Equations, 21 (4)
doi: 10.1007/s00028-021-00712-3
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the incompressible case. For a mixture, incompressibility is defined as the independence of average volume on pressure, and a weighted sum of the partial mass densities stays constant. In this type of models, the velocity field in the Navier–Stokes equations is not solenoidal and, due to different specific volumes of the species, the pressure remains connected to the densities by algebraic formula. By means of a change of variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity and incompressibility constraints affecting the density, and prove two type of results: the local-in-time well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data sufficiently close to a smooth equilibrium solution.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Bothe, Dieter ; Druet, Pierre-Etienne
Art des Eintrags: Bibliographie
Titel: Well-posedness analysis of multicomponent incompressible flow models
Sprache: Englisch
Publikationsjahr: 2021
Ort: Basel
Verlag: Springer International Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Evolution Equations
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 4
DOI: 10.1007/s00028-021-00712-3
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the incompressible case. For a mixture, incompressibility is defined as the independence of average volume on pressure, and a weighted sum of the partial mass densities stays constant. In this type of models, the velocity field in the Navier–Stokes equations is not solenoidal and, due to different specific volumes of the species, the pressure remains connected to the densities by algebraic formula. By means of a change of variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity and incompressibility constraints affecting the density, and prove two type of results: the local-in-time well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data sufficiently close to a smooth equilibrium solution.

Freie Schlagworte: Multicomponent flow, Complex fluid, Fluid mixture, Incompressible fluid, Low Mach-number, Strong solutions
Zusätzliche Informationen:

Mathematics Subject Classification: 35M33, 35Q30, 76N10, 35D35, 35B65, 35B35, 35K57, 35Q35, 35Q79, 76R50, 80A17, 80A32, 92E20

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Analysis
04 Fachbereich Mathematik > Analysis > Mathematische Modellierung und Analysis
Hinterlegungsdatum: 05 Sep 2024 08:50
Letzte Änderung: 05 Sep 2024 08:50
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen