TU Darmstadt / ULB / TUbiblio

Adapters Strike Back

Steitz, Jan-Martin O. ; Roth, Stefan (2024)
Adapters Strike Back.
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA (16.06.2024-22.06.2024)
doi: 10.1109/CVPR52733.2024.02213
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Adapters provide an efficient and lightweight mechanism for adapting trained transformer models to a variety of dif-ferent tasks. However, they have often been found to be outperformed by other adaptation mechanisms including low-rank adaptation. In this paper, we provide an in-depth study of adapters, their internal structure, as well as vari-ous implementation choices. We uncover pitfalls for using adapters and suggest a concrete, improved adapter architecture, called Adapter+, that not only outperforms previous adapter implementations but surpasses a number of other, more complex adaptation mechanisms in several challenging settings. Despite this, our suggested adapter is highly robust and, unlike previous work, requires little to no manual inter-vention when addressing a novel scenario. Adapter+ reaches state-of-the-art average accuracy on the VTAB benchmark, even without a per-task hyperparameter optimization. ††Code is available at https://github.com/visinf/adapter_plus.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Steitz, Jan-Martin O. ; Roth, Stefan
Art des Eintrags: Bibliographie
Titel: Adapters Strike Back
Sprache: Englisch
Publikationsjahr: 16 September 2024
Verlag: IEEE
Buchtitel: Proceedings: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition: CVPR 2024
Veranstaltungstitel: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Veranstaltungsort: Seattle, USA
Veranstaltungsdatum: 16.06.2024-22.06.2024
DOI: 10.1109/CVPR52733.2024.02213
Kurzbeschreibung (Abstract):

Adapters provide an efficient and lightweight mechanism for adapting trained transformer models to a variety of dif-ferent tasks. However, they have often been found to be outperformed by other adaptation mechanisms including low-rank adaptation. In this paper, we provide an in-depth study of adapters, their internal structure, as well as vari-ous implementation choices. We uncover pitfalls for using adapters and suggest a concrete, improved adapter architecture, called Adapter+, that not only outperforms previous adapter implementations but surpasses a number of other, more complex adaptation mechanisms in several challenging settings. Despite this, our suggested adapter is highly robust and, unlike previous work, requires little to no manual inter-vention when addressing a novel scenario. Adapter+ reaches state-of-the-art average accuracy on the VTAB benchmark, even without a per-task hyperparameter optimization. ††Code is available at https://github.com/visinf/adapter_plus.

Freie Schlagworte: emergenCITY_INF, emergenCITY
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Visuelle Inferenz
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 15 Jan 2025 12:54
Letzte Änderung: 15 Jan 2025 12:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen