TU Darmstadt / ULB / TUbiblio

Modeling and Measuring Short Text Similarities. On the Multi-Dimensional Differences between German Poetry of Realism and Modernism

Ehrmanntraut, Anton ; Hagen, Thora ; Jannidis, Fotis ; Konle, Leonard ; Kröncke, Merten ; Winko, Simone (2022)
Modeling and Measuring Short Text Similarities. On the Multi-Dimensional Differences between German Poetry of Realism and Modernism.
In: Journal of Computational Literary Studies, 1 (1)
doi: 10.48694/jcls.116
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

This study contributes to the ongoing discussion on how to operationalize text similarity for the purposes of computational literary studies by defining, justifying theoretically and employing a multi-dimensional text model. Additionally, we evaluate a set of strategies to implement this model for very short texts like poetry using a range of methods from weighted sparse vectors up to very recent neural sentence embeddings based on annotations of emotions, genre and similarity. And finally, we show the relevance of using such a complex text model by applying the best method to a research question about the development of early modernism in German poetry. While we can confirm some important hypotheses from literary studies, we are also able to differentiate or relativize others. In particular, our findings do not support the widely held thesis that the change from realism to modernism was a revolutionary ‘rupture’.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Ehrmanntraut, Anton ; Hagen, Thora ; Jannidis, Fotis ; Konle, Leonard ; Kröncke, Merten ; Winko, Simone
Art des Eintrags: Bibliographie
Titel: Modeling and Measuring Short Text Similarities. On the Multi-Dimensional Differences between German Poetry of Realism and Modernism
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Verlag: Universitäts- und Landesbibliothek Darmstadt
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Computational Literary Studies
Jahrgang/Volume einer Zeitschrift: 1
(Heft-)Nummer: 1
Kollation: 30 Seiten
DOI: 10.48694/jcls.116
Zugehörige Links:
Kurzbeschreibung (Abstract):

This study contributes to the ongoing discussion on how to operationalize text similarity for the purposes of computational literary studies by defining, justifying theoretically and employing a multi-dimensional text model. Additionally, we evaluate a set of strategies to implement this model for very short texts like poetry using a range of methods from weighted sparse vectors up to very recent neural sentence embeddings based on annotations of emotions, genre and similarity. And finally, we show the relevance of using such a complex text model by applying the best method to a research question about the development of early modernism in German poetry. While we can confirm some important hypotheses from literary studies, we are also able to differentiate or relativize others. In particular, our findings do not support the widely held thesis that the change from realism to modernism was a revolutionary ‘rupture’.

Freie Schlagworte: short text, similarity, poetry, modernism, realism
Zusätzliche Informationen:

Urspr. Konferenzveröffentlichung/Originally conference publication: 1st Annual Conference of Computational Literary Studies, 01.-02.06.2022, Darmstadt, Germany

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 800 Literatur > 800 Literatur, Rhetorik, Literaturwissenschaft
Fachbereich(e)/-gebiet(e): 02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft > Digital Philology - Neuere deutsche Literaturwissenschaft
02 Fachbereich Gesellschafts- und Geschichtswissenschaften
02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft
Hinterlegungsdatum: 02 Aug 2024 12:49
Letzte Änderung: 02 Aug 2024 12:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen