TU Darmstadt / ULB / TUbiblio

Modeling and Predicting Literary Reception. A Data-Rich Approach to Literary Historical Reception

Brottrager, Judith ; Stahl, Annina ; Arslan, Arda ; Brandes, Ulrik ; Weitin, Thomas (2022)
Modeling and Predicting Literary Reception. A Data-Rich Approach to Literary Historical Reception.
In: Journal of Computational Literary Studies, 1 (1)
doi: 10.48694/jcls.95
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

This contribution exemplifies a workflow for the quantitative operationalization and analysis of historical literary reception. We will show how to encode literary historical information in a dataset that is suitable for quantitative analysis and present a nuanced and theory-based perspective on automated sentiment detection in historical literary reviews. Applying our method to corpora of English and German novels and narratives published from 1688 to 1914 and corresponding reviews and circulating library catalogs, we investigate if a text’s popularity with lay audiences, the attention from contemporary experts or the sentiment in experts’ reviews can be predicted from textual features, with the aim of contributing to the understanding of how literary reception as a social process can be linked to textual qualities.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Brottrager, Judith ; Stahl, Annina ; Arslan, Arda ; Brandes, Ulrik ; Weitin, Thomas
Art des Eintrags: Bibliographie
Titel: Modeling and Predicting Literary Reception. A Data-Rich Approach to Literary Historical Reception
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Verlag: Universitäts- und Landesbibliothek Darmstadt
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Computational Literary Studies
Jahrgang/Volume einer Zeitschrift: 1
(Heft-)Nummer: 1
Kollation: 27 Seiten
DOI: 10.48694/jcls.95
Zugehörige Links:
Kurzbeschreibung (Abstract):

This contribution exemplifies a workflow for the quantitative operationalization and analysis of historical literary reception. We will show how to encode literary historical information in a dataset that is suitable for quantitative analysis and present a nuanced and theory-based perspective on automated sentiment detection in historical literary reviews. Applying our method to corpora of English and German novels and narratives published from 1688 to 1914 and corresponding reviews and circulating library catalogs, we investigate if a text’s popularity with lay audiences, the attention from contemporary experts or the sentiment in experts’ reviews can be predicted from textual features, with the aim of contributing to the understanding of how literary reception as a social process can be linked to textual qualities.

Freie Schlagworte: historical reception, operationalization, sentiment analysis, text classification, 18th century, 19th century
Zusätzliche Informationen:

Urspr. Konferenzveröffentlichung/Originally conference publication: 1st Annual Conference of Computational Literary Studies, 01.-02.06.2022, Darmstadt, Germany

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 800 Literatur > 800 Literatur, Rhetorik, Literaturwissenschaft
Fachbereich(e)/-gebiet(e): 02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft > Digital Philology - Neuere deutsche Literaturwissenschaft
02 Fachbereich Gesellschafts- und Geschichtswissenschaften
02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft
Hinterlegungsdatum: 02 Aug 2024 12:49
Letzte Änderung: 02 Aug 2024 12:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen