TU Darmstadt / ULB / TUbiblio

Dissolution of Portlandite in Pure Water: Part 1 Molecular Dynamics (MD) Approach

Salah Uddin, Khondakar Mohammad ; Izadifar, Mohammadreza ; Ukrainczyk, Neven ; Koenders, Eduardus ; Middendorf, Bernhard (2022)
Dissolution of Portlandite in Pure Water: Part 1 Molecular Dynamics (MD) Approach.
In: Materials, 15 (4)
doi: 10.3390/ma15041404
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The current contribution proposes a multi-scale bridging modeling approach for the dissolution of crystals to connect the atomistic scale to the (sub-) micro-scale. This is demonstrated in the example of dissolution of portlandite, as a relatively simple benchmarking example for cementitious materials. Moreover, dissolution kinetics is also important for other industrial processes, e.g., acid gas absorption and pH control. In this work, the biased molecular dynamics (metadynamics) coupled with reactive force field is employed to calculate the reaction path as a free energy surface of calcium dissolution at 298 K in water from the different crystal facets of portlandite. It is also explained why the reactivity of the (010), (100), and (11¯0) crystal facet is higher compared to the (001) facet. In addition, the influence of neighboring Ca crystal sites arrangements on the atomistic dissolution rates is explained as necessary scenarios for the upscaling. The calculated rate constants of all atomistic reaction scenarios provided an input catalog ready to be used in an upscaling kinetic Monte Carlo (KMC) approach.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Salah Uddin, Khondakar Mohammad ; Izadifar, Mohammadreza ; Ukrainczyk, Neven ; Koenders, Eduardus ; Middendorf, Bernhard
Art des Eintrags: Bibliographie
Titel: Dissolution of Portlandite in Pure Water: Part 1 Molecular Dynamics (MD) Approach
Sprache: Englisch
Publikationsjahr: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 4
Kollation: 13 Seiten
DOI: 10.3390/ma15041404
Zugehörige Links:
Kurzbeschreibung (Abstract):

The current contribution proposes a multi-scale bridging modeling approach for the dissolution of crystals to connect the atomistic scale to the (sub-) micro-scale. This is demonstrated in the example of dissolution of portlandite, as a relatively simple benchmarking example for cementitious materials. Moreover, dissolution kinetics is also important for other industrial processes, e.g., acid gas absorption and pH control. In this work, the biased molecular dynamics (metadynamics) coupled with reactive force field is employed to calculate the reaction path as a free energy surface of calcium dissolution at 298 K in water from the different crystal facets of portlandite. It is also explained why the reactivity of the (010), (100), and (11¯0) crystal facet is higher compared to the (001) facet. In addition, the influence of neighboring Ca crystal sites arrangements on the atomistic dissolution rates is explained as necessary scenarios for the upscaling. The calculated rate constants of all atomistic reaction scenarios provided an input catalog ready to be used in an upscaling kinetic Monte Carlo (KMC) approach.

Freie Schlagworte: cement hydration, dissolution of portlandite, free energy surfaces, surface properties, molecular dynamics simulation, reactive force field, metadynamics
Zusätzliche Informationen:

Part 2: urn:nbn:de:tuda-tuprints-210206

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Werkstoffe im Bauwesen
Hinterlegungsdatum: 02 Aug 2024 12:39
Letzte Änderung: 02 Aug 2024 12:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen