TU Darmstadt / ULB / TUbiblio

Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation

Liang, Jun ; Nuhnen, Alexander ; Millan, Simon ; Breitzke, Hergen ; Gvilava, Vasily ; Buntkowsky, Gerd ; Janiak, Christoph (2020)
Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation.
In: Angewandte Chemie, 132 (15)
doi: 10.1002/ange.201916002
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient-wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO₂ affinity were successfully encapsulated into the nanospace of Cr-based MIL-101 while retaining the crystal framework, morphology, and high stability of MIL-101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL-101, more affinity sites for CO₂ are created in the resulting CB6@MIL-101 composites, leading to enhanced CO₂ uptake capacity and CO₂/N₂, CO₂/CH₄ separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Liang, Jun ; Nuhnen, Alexander ; Millan, Simon ; Breitzke, Hergen ; Gvilava, Vasily ; Buntkowsky, Gerd ; Janiak, Christoph
Art des Eintrags: Bibliographie
Titel: Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation
Sprache: Englisch
Publikationsjahr: 2020
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Angewandte Chemie
Jahrgang/Volume einer Zeitschrift: 132
(Heft-)Nummer: 15
DOI: 10.1002/ange.201916002
Zugehörige Links:
Kurzbeschreibung (Abstract):

We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient-wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO₂ affinity were successfully encapsulated into the nanospace of Cr-based MIL-101 while retaining the crystal framework, morphology, and high stability of MIL-101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL-101, more affinity sites for CO₂ are created in the resulting CB6@MIL-101 composites, leading to enhanced CO₂ uptake capacity and CO₂/N₂, CO₂/CH₄ separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 02 Aug 2024 12:37
Letzte Änderung: 02 Aug 2024 12:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen