Liang, Jun ; Nuhnen, Alexander ; Millan, Simon ; Breitzke, Hergen ; Gvilava, Vasily ; Buntkowsky, Gerd ; Janiak, Christoph (2020)
Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation.
In: Angewandte Chemie, 132 (15)
doi: 10.1002/ange.201916002
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient-wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO₂ affinity were successfully encapsulated into the nanospace of Cr-based MIL-101 while retaining the crystal framework, morphology, and high stability of MIL-101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL-101, more affinity sites for CO₂ are created in the resulting CB6@MIL-101 composites, leading to enhanced CO₂ uptake capacity and CO₂/N₂, CO₂/CH₄ separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Liang, Jun ; Nuhnen, Alexander ; Millan, Simon ; Breitzke, Hergen ; Gvilava, Vasily ; Buntkowsky, Gerd ; Janiak, Christoph |
Art des Eintrags: | Bibliographie |
Titel: | Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation |
Sprache: | Englisch |
Publikationsjahr: | 2020 |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Angewandte Chemie |
Jahrgang/Volume einer Zeitschrift: | 132 |
(Heft-)Nummer: | 15 |
DOI: | 10.1002/ange.201916002 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient-wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO₂ affinity were successfully encapsulated into the nanospace of Cr-based MIL-101 while retaining the crystal framework, morphology, and high stability of MIL-101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL-101, more affinity sites for CO₂ are created in the resulting CB6@MIL-101 composites, leading to enhanced CO₂ uptake capacity and CO₂/N₂, CO₂/CH₄ separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications. |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 540 Chemie |
Fachbereich(e)/-gebiet(e): | 07 Fachbereich Chemie 07 Fachbereich Chemie > Eduard Zintl-Institut 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie |
Hinterlegungsdatum: | 02 Aug 2024 12:37 |
Letzte Änderung: | 02 Aug 2024 12:37 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation. (deposited 10 Jan 2022 13:33)
- Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation. (deposited 02 Aug 2024 12:37) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |