TU Darmstadt / ULB / TUbiblio

Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation

Liang, Jun ; Nuhnen, Alexander ; Millan, Simon ; Breitzke, Hergen ; Gvilava, Vasily ; Buntkowsky, Gerd ; Janiak, Christoph (2022)
Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation.
In: Angewandte Chemie, 132 (15)
doi: 10.26083/tuprints-00020291
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient-wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO₂ affinity were successfully encapsulated into the nanospace of Cr-based MIL-101 while retaining the crystal framework, morphology, and high stability of MIL-101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL-101, more affinity sites for CO₂ are created in the resulting CB6@MIL-101 composites, leading to enhanced CO₂ uptake capacity and CO₂/N₂, CO₂/CH₄ separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Liang, Jun ; Nuhnen, Alexander ; Millan, Simon ; Breitzke, Hergen ; Gvilava, Vasily ; Buntkowsky, Gerd ; Janiak, Christoph
Art des Eintrags: Zweitveröffentlichung
Titel: Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO₂ Separation
Sprache: Englisch
Publikationsjahr: 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Angewandte Chemie
Jahrgang/Volume einer Zeitschrift: 132
(Heft-)Nummer: 15
DOI: 10.26083/tuprints-00020291
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20291
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient-wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO₂ affinity were successfully encapsulated into the nanospace of Cr-based MIL-101 while retaining the crystal framework, morphology, and high stability of MIL-101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL-101, more affinity sites for CO₂ are created in the resulting CB6@MIL-101 composites, leading to enhanced CO₂ uptake capacity and CO₂/N₂, CO₂/CH₄ separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-202918
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 10 Jan 2022 13:33
Letzte Änderung: 11 Jan 2022 06:47
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen