TU Darmstadt / ULB / TUbiblio

Numerical Phase-Field Model Validation for Dissolution of Minerals

Yang, Sha ; Ukrainczyk, Neven ; Caggiano, Antonio ; Koenders, Eddie (2021)
Numerical Phase-Field Model Validation for Dissolution of Minerals.
In: Applied Sciences, 11 (6)
doi: 10.3390/app11062464
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Yang, Sha ; Ukrainczyk, Neven ; Caggiano, Antonio ; Koenders, Eddie
Art des Eintrags: Bibliographie
Titel: Numerical Phase-Field Model Validation for Dissolution of Minerals
Sprache: Englisch
Publikationsjahr: 2021
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Sciences
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 6
Kollation: 22 Seiten
DOI: 10.3390/app11062464
Zugehörige Links:
Kurzbeschreibung (Abstract):

Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 690 Hausbau, Bauhandwerk
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Werkstoffe im Bauwesen
Hinterlegungsdatum: 02 Aug 2024 12:36
Letzte Änderung: 02 Aug 2024 12:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen