TU Darmstadt / ULB / TUbiblio

Mechanical softening of CuX alloys at elevated temperatures studied via high temperature scanning indentation

Sos, Marcel ; Tiphene, Gabrielle ; Loubet, Jean-Luc ; Bruns, Sebastian ; Bruder, Enrico ; Durst, Karsten (2024)
Mechanical softening of CuX alloys at elevated temperatures studied via high temperature scanning indentation.
In: Materials & Design, 2024, 240
doi: 10.26083/tuprints-00027666
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The thermal stability and temperature dependent hardness of ultrafine-grained Cu-alloys CuSn5 and CuZn5 after high pressure torsion are investigated using the high temperature scanning indentation (HTSI) method. Fast indentations are carried out during thermal cycling of the samples (heating-holding-cooling) to measure hardness and strain rate sensitivity as a function of temperature and time. The microstructures after each thermal cycle are investigated to characterize the coarsening behaviour of both alloys.

Results show that the thermal stability of the tested alloys can be expressed in terms of several temperature regimes: A fully stable regime, a transient regime in which growth of individual grains occurs, and finally a regime in which the microstructure is fully coarsened. The onset of grain growth is accompanied by high strain rate sensitivity on the order of 0.2–0.3. Furthermore, the obtained hardness and strain rate sensitivity values are in good agreement with continuous stiffness measurement (CSM) and strain rate jump (SRJ) experiments. This highlights the applicability of the HTSI method to the characterization of the thermomechanical properties of ultrafine-grained alloys.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Sos, Marcel ; Tiphene, Gabrielle ; Loubet, Jean-Luc ; Bruns, Sebastian ; Bruder, Enrico ; Durst, Karsten
Art des Eintrags: Zweitveröffentlichung
Titel: Mechanical softening of CuX alloys at elevated temperatures studied via high temperature scanning indentation
Sprache: Englisch
Publikationsjahr: 16 Juli 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2024
Ort der Erstveröffentlichung: Amsterdam [u.a.]
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials & Design
Jahrgang/Volume einer Zeitschrift: 240
Kollation: 13 Seiten
DOI: 10.26083/tuprints-00027666
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27666
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

The thermal stability and temperature dependent hardness of ultrafine-grained Cu-alloys CuSn5 and CuZn5 after high pressure torsion are investigated using the high temperature scanning indentation (HTSI) method. Fast indentations are carried out during thermal cycling of the samples (heating-holding-cooling) to measure hardness and strain rate sensitivity as a function of temperature and time. The microstructures after each thermal cycle are investigated to characterize the coarsening behaviour of both alloys.

Results show that the thermal stability of the tested alloys can be expressed in terms of several temperature regimes: A fully stable regime, a transient regime in which growth of individual grains occurs, and finally a regime in which the microstructure is fully coarsened. The onset of grain growth is accompanied by high strain rate sensitivity on the order of 0.2–0.3. Furthermore, the obtained hardness and strain rate sensitivity values are in good agreement with continuous stiffness measurement (CSM) and strain rate jump (SRJ) experiments. This highlights the applicability of the HTSI method to the characterization of the thermomechanical properties of ultrafine-grained alloys.

Freie Schlagworte: Nanoindentation, High Temperature, Mechanical Properties, Ultrafine-grained microstructure, Strain rate sensitivity
ID-Nummer: 112865
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-276666
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 16 Jul 2024 12:23
Letzte Änderung: 17 Jul 2024 08:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen