TU Darmstadt / ULB / TUbiblio

Impact of non‐stoichiometric phases and grain boundaries on the nanoscale forming and switching of HfOₓ thin films

Schmidt, Niclas ; Kaiser, Nico ; Vogel, Tobias ; Piros, Eszter ; Karthäuser, Silvia ; Waser, Rainer ; Alff, Lambert ; Dittmann, Regina (2024)
Impact of non‐stoichiometric phases and grain boundaries on the nanoscale forming and switching of HfOₓ thin films.
In: Advanced Electronic Materials, 10 (4)
doi: 10.1002/aelm.202300693
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

HfO₂ is one of the most common memristive materials and it is widely accepted that oxygen vacancies are prerequisite to reduce the forming voltage of the respective memristive devices. Here, a series of six oxygen engineered substoichiometric HfO₂₋ₓ thin films with varying oxygen deficiency is investigated by conductive atomic force microscopy (c‐AFM) and the switching process of substoichiometric films is observed on the nanoscale. X‐ray diffractometry (XRD) exhibits a phase transition from stoichiometric, monoclinic HfO₂ toward oxygen deficient, rhombohedral HfO₁.₇. The conductance of HfO₂₋ₓ is increasing with increasing oxygen deficiency, which is consistent with the increasing prevalence of the highly conductive rhombohedral phase. Simultaneously, c‐AFM reveals significant local conductivity differences between grains and grain boundaries, regardless of the level of oxygen deficiency. Single grains of highly oxygen deficient samples are formed at significant lower voltages. The mean forming voltage is reduced from (7.0 ± 0.6) V for HfO₂ to (1.9 ± 0.8) V for HfO₁.₇. Resistive switching on the nanoscale is established for single grains for the highest deficient thin film samples. The final resistance state is thereby dependent on the initial conductivity of the grains. These studies offer valuable insights into the switching behavior of memristive polycrystalline HfO₂.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Schmidt, Niclas ; Kaiser, Nico ; Vogel, Tobias ; Piros, Eszter ; Karthäuser, Silvia ; Waser, Rainer ; Alff, Lambert ; Dittmann, Regina
Art des Eintrags: Bibliographie
Titel: Impact of non‐stoichiometric phases and grain boundaries on the nanoscale forming and switching of HfOₓ thin films
Sprache: Englisch
Publikationsjahr: April 2024
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Electronic Materials
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 4
Kollation: 10 Seiten
DOI: 10.1002/aelm.202300693
Zugehörige Links:
Kurzbeschreibung (Abstract):

HfO₂ is one of the most common memristive materials and it is widely accepted that oxygen vacancies are prerequisite to reduce the forming voltage of the respective memristive devices. Here, a series of six oxygen engineered substoichiometric HfO₂₋ₓ thin films with varying oxygen deficiency is investigated by conductive atomic force microscopy (c‐AFM) and the switching process of substoichiometric films is observed on the nanoscale. X‐ray diffractometry (XRD) exhibits a phase transition from stoichiometric, monoclinic HfO₂ toward oxygen deficient, rhombohedral HfO₁.₇. The conductance of HfO₂₋ₓ is increasing with increasing oxygen deficiency, which is consistent with the increasing prevalence of the highly conductive rhombohedral phase. Simultaneously, c‐AFM reveals significant local conductivity differences between grains and grain boundaries, regardless of the level of oxygen deficiency. Single grains of highly oxygen deficient samples are formed at significant lower voltages. The mean forming voltage is reduced from (7.0 ± 0.6) V for HfO₂ to (1.9 ± 0.8) V for HfO₁.₇. Resistive switching on the nanoscale is established for single grains for the highest deficient thin film samples. The final resistance state is thereby dependent on the initial conductivity of the grains. These studies offer valuable insights into the switching behavior of memristive polycrystalline HfO₂.

Freie Schlagworte: c‐AFM, defect engineering, grain boundaries, hafnium oxide, MBE, resistive switching
ID-Nummer: Artikel-ID: 2300693
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
Hinterlegungsdatum: 13 Jun 2024 06:40
Letzte Änderung: 17 Jun 2024 09:54
PPN: 519187431
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen