TU Darmstadt / ULB / TUbiblio

Mapping local atomic structure of metallic glasses using machine learning aided 4D-STEM

Kang, Sangjun ; Wollersen, Vanessa ; Minnert, Christian ; Durst, Karsten ; Kim, Hyoung-Seop ; Kübel, Christian ; Mu, Xiaoke (2024)
Mapping local atomic structure of metallic glasses using machine learning aided 4D-STEM.
In: Acta Materialia, 263
doi: 10.1016/j.actamat.2023.119495
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Amorphous materials such as polymers, metallic and oxidic glasses consist of heterogeneous atomic/molecular packing at the nanoscale. Spatial variation of the local structure plays an important role in determining material properties. Experimentally probing the local atomic structure within the amorphous phase has been one of the main challenges for material research. Here, we present a new approach to characterize the local atomic structure and map structural variants in the amorphous phase using machine learning (ML) aided four dimensional-scanning transmission electron microscopy (4D-STEM). We utilized nonnegative matrix factorization (NMF) to identify the local structural types of metallic glasses in 4D-STEM datasets. Using Fe-based metallic glasses as a model system, we demonstrate that two basic structural types, one with a more liquid-like and another with a more solid-like structure, are distributed throughout the glass with a characteristic length scale of a few nanometers. Thermal annealing induces a change in their distribution and relative population but without the appearance of any additional phase. This provides new insights into the relaxation phenomena of metallic glasses and solid experimental evidence for the theoretical hypothesis on atomic packing in glassy structures.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kang, Sangjun ; Wollersen, Vanessa ; Minnert, Christian ; Durst, Karsten ; Kim, Hyoung-Seop ; Kübel, Christian ; Mu, Xiaoke
Art des Eintrags: Bibliographie
Titel: Mapping local atomic structure of metallic glasses using machine learning aided 4D-STEM
Sprache: Englisch
Publikationsjahr: 15 Januar 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 263
DOI: 10.1016/j.actamat.2023.119495
Kurzbeschreibung (Abstract):

Amorphous materials such as polymers, metallic and oxidic glasses consist of heterogeneous atomic/molecular packing at the nanoscale. Spatial variation of the local structure plays an important role in determining material properties. Experimentally probing the local atomic structure within the amorphous phase has been one of the main challenges for material research. Here, we present a new approach to characterize the local atomic structure and map structural variants in the amorphous phase using machine learning (ML) aided four dimensional-scanning transmission electron microscopy (4D-STEM). We utilized nonnegative matrix factorization (NMF) to identify the local structural types of metallic glasses in 4D-STEM datasets. Using Fe-based metallic glasses as a model system, we demonstrate that two basic structural types, one with a more liquid-like and another with a more solid-like structure, are distributed throughout the glass with a characteristic length scale of a few nanometers. Thermal annealing induces a change in their distribution and relative population but without the appearance of any additional phase. This provides new insights into the relaxation phenomena of metallic glasses and solid experimental evidence for the theoretical hypothesis on atomic packing in glassy structures.

Freie Schlagworte: four dimensional scanning transmission electron microscopy (4D-STEM), pair distribution function (PDF), nonnegative matrix factorization (NMF), metallic glasses
ID-Nummer: Artikel-ID: 119495
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie
Hinterlegungsdatum: 12 Jun 2024 09:26
Letzte Änderung: 13 Jun 2024 12:41
PPN: 51912104X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen