TU Darmstadt / ULB / TUbiblio

From Review to Genre to Novel and Back. An Attempt To Relate Reader Impact to Phenomena of Novel Text

Koolen, Marijn ; Zundert, Joris J. van ; Viviani, Eva ; Schnober, Carsten ; Hage, Willem van ; Tereshko, Katja (2024)
From Review to Genre to Novel and Back. An Attempt To Relate Reader Impact to Phenomena of Novel Text.
doi: 10.26083/tuprints-00027398
Report, Erstveröffentlichung, Preprint

Kurzbeschreibung (Abstract)

We are interested in the textual features that correlate with reported impact by readers of novels. We operationalize impact measurement through a rule-based reading impact model and apply it to 634,614 reader reviews mined from seven review platforms. We compute co-occurrence of impact-related terms and their keyness for genres represented in the corpus. The corpus consists of the full text of 18,885 books from which we derived topic models. The topics we find correlate strongly with genre, and we get strong indicators for what key impact terms are connected to which genre. These key impact terms gives us a first evidence-based insight into genre-related readers’ motivations.

Typ des Eintrags: Report
Erschienen: 2024
Autor(en): Koolen, Marijn ; Zundert, Joris J. van ; Viviani, Eva ; Schnober, Carsten ; Hage, Willem van ; Tereshko, Katja
Art des Eintrags: Erstveröffentlichung
Titel: From Review to Genre to Novel and Back. An Attempt To Relate Reader Impact to Phenomena of Novel Text
Sprache: Englisch
Publikationsjahr: 28 Mai 2024
Ort: Darmstadt
(Heft-)Nummer: 1
Reihe: CCLS2024 Conference Preprints
Band einer Reihe: 3
Kollation: 26 Seiten
DOI: 10.26083/tuprints-00027398
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27398
Zugehörige Links:
Kurzbeschreibung (Abstract):

We are interested in the textual features that correlate with reported impact by readers of novels. We operationalize impact measurement through a rule-based reading impact model and apply it to 634,614 reader reviews mined from seven review platforms. We compute co-occurrence of impact-related terms and their keyness for genres represented in the corpus. The corpus consists of the full text of 18,885 books from which we derived topic models. The topics we find correlate strongly with genre, and we get strong indicators for what key impact terms are connected to which genre. These key impact terms gives us a first evidence-based insight into genre-related readers’ motivations.

Freie Schlagworte: reader impact, literary novels, genre, topic modeling
Status: Preprint
URN: urn:nbn:de:tuda-tuprints-273983
Zusätzliche Informationen:

This paper has been submitted to the conference track of JCLS. It has been peer reviewed and accepted for presentation and discussion at the 3rd Annual Conference of Computational Literary Studies at Vienna, Austria, in June 2024.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 800 Literatur > 800 Literatur, Rhetorik, Literaturwissenschaft
Fachbereich(e)/-gebiet(e): 02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft > Digital Philology - Neuere deutsche Literaturwissenschaft
02 Fachbereich Gesellschafts- und Geschichtswissenschaften
02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft
Hinterlegungsdatum: 28 Mai 2024 07:57
Letzte Änderung: 03 Jun 2024 10:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen