TU Darmstadt / ULB / TUbiblio

Mechanical softening of CuX alloys at elevated temperatures studied via high temperature scanning indentation

Sos, Marcel ; Tiphene, Gabrielle ; Loubet, Jean-Luc ; Bruns, Sebastian ; Bruder, Enrico ; Durst, Karsten (2024)
Mechanical softening of CuX alloys at elevated temperatures studied via high temperature scanning indentation.
In: Materials & Design, 240
doi: 10.1016/j.matdes.2024.112865
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The thermal stability and temperature dependent hardness of ultrafine-grained Cu-alloys CuSn5 and CuZn5 after high pressure torsion are investigated using the high temperature scanning indentation (HTSI) method. Fast indentations are carried out during thermal cycling of the samples (heating-holding-cooling) to measure hardness and strain rate sensitivity as a function of temperature and time. The microstructures after each thermal cycle are investigated to characterize the coarsening behaviour of both alloys.

Results show that the thermal stability of the tested alloys can be expressed in terms of several temperature regimes: A fully stable regime, a transient regime in which growth of individual grains occurs, and finally a regime in which the microstructure is fully coarsened. The onset of grain growth is accompanied by high strain rate sensitivity on the order of 0.2–0.3. Furthermore, the obtained hardness and strain rate sensitivity values are in good agreement with continuous stiffness measurement (CSM) and strain rate jump (SRJ) experiments. This highlights the applicability of the HTSI method to the characterization of the thermomechanical properties of ultrafine-grained alloys.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Sos, Marcel ; Tiphene, Gabrielle ; Loubet, Jean-Luc ; Bruns, Sebastian ; Bruder, Enrico ; Durst, Karsten
Art des Eintrags: Bibliographie
Titel: Mechanical softening of CuX alloys at elevated temperatures studied via high temperature scanning indentation
Sprache: Englisch
Publikationsjahr: 2024
Ort: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials & Design
Jahrgang/Volume einer Zeitschrift: 240
Kollation: 13 Seiten
DOI: 10.1016/j.matdes.2024.112865
Zugehörige Links:
Kurzbeschreibung (Abstract):

The thermal stability and temperature dependent hardness of ultrafine-grained Cu-alloys CuSn5 and CuZn5 after high pressure torsion are investigated using the high temperature scanning indentation (HTSI) method. Fast indentations are carried out during thermal cycling of the samples (heating-holding-cooling) to measure hardness and strain rate sensitivity as a function of temperature and time. The microstructures after each thermal cycle are investigated to characterize the coarsening behaviour of both alloys.

Results show that the thermal stability of the tested alloys can be expressed in terms of several temperature regimes: A fully stable regime, a transient regime in which growth of individual grains occurs, and finally a regime in which the microstructure is fully coarsened. The onset of grain growth is accompanied by high strain rate sensitivity on the order of 0.2–0.3. Furthermore, the obtained hardness and strain rate sensitivity values are in good agreement with continuous stiffness measurement (CSM) and strain rate jump (SRJ) experiments. This highlights the applicability of the HTSI method to the characterization of the thermomechanical properties of ultrafine-grained alloys.

ID-Nummer: Artikel-ID: 112865
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 27 Mai 2024 05:52
Letzte Änderung: 17 Jul 2024 08:35
PPN: 518628973
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen