Chadda, Romol ; Dali, Omar Ben ; Latsch, Bastian ; Sundaralingam, Esan ; Kupnik, Mario (2023)
3D-Printed Strain Gauges Based on Conductive Filament for Experimental Stress Analysis.
IEEE SENSORS 2023. Vienna, Austria (29.10.-01.11.2023)
doi: 10.1109/SENSORS56945.2023.10325276
Konferenzveröffentlichung, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We present a method for manufacturing 3D-printed strain gauges by means of fused filament fabrication that are suitable for experimental stress analysis applications. The 3D-printed strain gauge (SG) is based on a multilayer structure, which is similar to the design of conventional metal foil SGs. This involves printing a meander-shaped measuring grid layer consisting of a conductive compound filament on a layer of non-conductive PLA that serves as a substrate. In order to evaluate the strain sensing behavior of the 3D-printed SG, it is bonded onto a steel plate by means of a cold curing superglue that undergoes a bending load of 30 N. Here, a finite element analysis is conducted for determining a proper position that ensures a high strain while not exceeding the yield strength. Our results show a reproducible behavior of the change in resistance of the 3D-printed SG in response to the bending load. Despite an existing creep that is based on the polymer properties of the filament, a linear behavior of the change in resistance linearity error of ±4 % is present. Furthermore, the sensitivity of the 3D-printed SG is four times higher than that of conventional metal foil strain gauges. Thus, these results confirm that the 3D-printed SG is a cost-effective alternative for strain sensing applications.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Chadda, Romol ; Dali, Omar Ben ; Latsch, Bastian ; Sundaralingam, Esan ; Kupnik, Mario |
Art des Eintrags: | Bibliographie |
Titel: | 3D-Printed Strain Gauges Based on Conductive Filament for Experimental Stress Analysis |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Ort: | Piscataway, NJ |
Verlag: | IEEE |
Buchtitel: | 2023 IEEE SENSORS Proceedings |
Kollation: | 4 Seiten |
Veranstaltungstitel: | IEEE SENSORS 2023 |
Veranstaltungsort: | Vienna, Austria |
Veranstaltungsdatum: | 29.10.-01.11.2023 |
DOI: | 10.1109/SENSORS56945.2023.10325276 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We present a method for manufacturing 3D-printed strain gauges by means of fused filament fabrication that are suitable for experimental stress analysis applications. The 3D-printed strain gauge (SG) is based on a multilayer structure, which is similar to the design of conventional metal foil SGs. This involves printing a meander-shaped measuring grid layer consisting of a conductive compound filament on a layer of non-conductive PLA that serves as a substrate. In order to evaluate the strain sensing behavior of the 3D-printed SG, it is bonded onto a steel plate by means of a cold curing superglue that undergoes a bending load of 30 N. Here, a finite element analysis is conducted for determining a proper position that ensures a high strain while not exceeding the yield strength. Our results show a reproducible behavior of the change in resistance of the 3D-printed SG in response to the bending load. Despite an existing creep that is based on the polymer properties of the filament, a linear behavior of the change in resistance linearity error of ±4 % is present. Furthermore, the sensitivity of the 3D-printed SG is four times higher than that of conventional metal foil strain gauges. Thus, these results confirm that the 3D-printed SG is a cost-effective alternative for strain sensing applications. |
Freie Schlagworte: | Resistance, Sensitivity, Bending, Strain measurement, Sensors, Behavioral sciences, Steel, strain gauge, force sensing, 3D-printed |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik DFG-Graduiertenkollegs DFG-Graduiertenkollegs > Graduiertenkolleg 2761 LokoAssist – Nahtlose Integration von Assistenzsystemen für die natürliche Lokomotion des Menschen |
Hinterlegungsdatum: | 13 Mai 2024 09:07 |
Letzte Änderung: | 06 Nov 2024 11:43 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
3D-Printed Strain Gauges Based on Conductive Filament for Experimental Stress Analysis. (deposited 03 Mai 2024 12:23)
- 3D-Printed Strain Gauges Based on Conductive Filament for Experimental Stress Analysis. (deposited 13 Mai 2024 09:07) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |