TU Darmstadt / ULB / TUbiblio

3D-Printed Strain Gauges Based on Conductive Filament for Experimental Stress Analysis

Chadda, Romol ; Dali, Omar Ben ; Latsch, Bastian ; Sundaralingam, Esan ; Kupnik, Mario (2024)
3D-Printed Strain Gauges Based on Conductive Filament for Experimental Stress Analysis.
IEEE SENSORS 2023. Vienna, Austria (29.10.-01.11.2023)
doi: 10.26083/tuprints-00027318
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We present a method for manufacturing 3D-printed strain gauges by means of fused filament fabrication that are suitable for experimental stress analysis applications. The 3D-printed strain gauge (SG) is based on a multilayer structure, which is similar to the design of conventional metal foil SGs. This involves printing a meander-shaped measuring grid layer consisting of a conductive compound filament on a layer of non-conductive PLA that serves as a substrate. In order to evaluate the strain sensing behavior of the 3D-printed SG, it is bonded onto a steel plate by means of a cold curing superglue that undergoes a bending load of 30 N. Here, a finite element analysis is conducted for determining a proper position that ensures a high strain while not exceeding the yield strength. Our results show a reproducible behavior of the change in resistance of the 3D-printed SG in response to the bending load. Despite an existing creep that is based on the polymer properties of the filament, a linear behavior of the change in resistance linearity error of ±4 % is present. Furthermore, the sensitivity of the 3D-printed SG is four times higher than that of conventional metal foil strain gauges. Thus, these results confirm that the 3D-printed SG is a cost-effective alternative for strain sensing applications.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Chadda, Romol ; Dali, Omar Ben ; Latsch, Bastian ; Sundaralingam, Esan ; Kupnik, Mario
Art des Eintrags: Zweitveröffentlichung
Titel: 3D-Printed Strain Gauges Based on Conductive Filament for Experimental Stress Analysis
Sprache: Englisch
Publikationsjahr: 3 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Piscataway, NJ
Verlag: IEEE
Buchtitel: 2023 IEEE SENSORS Proceedings
Kollation: 4 Seiten
Veranstaltungstitel: IEEE SENSORS 2023
Veranstaltungsort: Vienna, Austria
Veranstaltungsdatum: 29.10.-01.11.2023
DOI: 10.26083/tuprints-00027318
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27318
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

We present a method for manufacturing 3D-printed strain gauges by means of fused filament fabrication that are suitable for experimental stress analysis applications. The 3D-printed strain gauge (SG) is based on a multilayer structure, which is similar to the design of conventional metal foil SGs. This involves printing a meander-shaped measuring grid layer consisting of a conductive compound filament on a layer of non-conductive PLA that serves as a substrate. In order to evaluate the strain sensing behavior of the 3D-printed SG, it is bonded onto a steel plate by means of a cold curing superglue that undergoes a bending load of 30 N. Here, a finite element analysis is conducted for determining a proper position that ensures a high strain while not exceeding the yield strength. Our results show a reproducible behavior of the change in resistance of the 3D-printed SG in response to the bending load. Despite an existing creep that is based on the polymer properties of the filament, a linear behavior of the change in resistance linearity error of ±4 % is present. Furthermore, the sensitivity of the 3D-printed SG is four times higher than that of conventional metal foil strain gauges. Thus, these results confirm that the 3D-printed SG is a cost-effective alternative for strain sensing applications.

Freie Schlagworte: Resistance, Sensitivity, Bending, Strain measurement, Sensors, Behavioral sciences, Steel, strain gauge, force sensing, 3D-printed
Status: Postprint
URN: urn:nbn:de:tuda-tuprints-273184
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik
Hinterlegungsdatum: 03 Mai 2024 12:23
Letzte Änderung: 13 Mai 2024 09:07
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen