Šošić, Adrian ; Rueckert, Elmar ; Peters, Jan ; Zoubir, Abdelhak M. ; Koeppl, Heinz (2024)
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling.
In: Journal of Machine Learning Research, 2018, 19 (69)
doi: 10.26083/tuprints-00026700
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Advances in the field of inverse reinforcement learning (IRL) have led to sophisticated inference frameworks that relax the original modeling assumption of observing an agent behavior that reflects only a single intention. Instead of learning a global behavioral model, recent IRL methods divide the demonstration data into parts, to account for the fact that different trajectories may correspond to different intentions, e.g., because they were generated by different domain experts. In this work, we go one step further: using the intuitive concept of subgoals, we build upon the premise that even a single trajectory can be explained more efficiently locally within a certain context than globally, enabling a more compact representation of the observed behavior. Based on this assumption, we build an implicit intentional model of the agent's goals to forecast its behavior in unobserved situations. The result is an integrated Bayesian prediction framework that significantly outperforms existing IRL solutions and provides smooth policy estimates consistent with the expert's plan. Most notably, our framework naturally handles situations where the intentions of the agent change over time and classical IRL algorithms fail. In addition, due to its probabilistic nature, the model can be straightforwardly applied in active learning scenarios to guide the demonstration process of the expert.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Šošić, Adrian ; Rueckert, Elmar ; Peters, Jan ; Zoubir, Abdelhak M. ; Koeppl, Heinz |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling |
Sprache: | Englisch |
Publikationsjahr: | 30 April 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2018 |
Ort der Erstveröffentlichung: | Brookline, Massachusetts |
Verlag: | Microtome Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Machine Learning Research |
Jahrgang/Volume einer Zeitschrift: | 19 |
(Heft-)Nummer: | 69 |
Kollation: | 45 Seiten |
DOI: | 10.26083/tuprints-00026700 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/26700 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Advances in the field of inverse reinforcement learning (IRL) have led to sophisticated inference frameworks that relax the original modeling assumption of observing an agent behavior that reflects only a single intention. Instead of learning a global behavioral model, recent IRL methods divide the demonstration data into parts, to account for the fact that different trajectories may correspond to different intentions, e.g., because they were generated by different domain experts. In this work, we go one step further: using the intuitive concept of subgoals, we build upon the premise that even a single trajectory can be explained more efficiently locally within a certain context than globally, enabling a more compact representation of the observed behavior. Based on this assumption, we build an implicit intentional model of the agent's goals to forecast its behavior in unobserved situations. The result is an integrated Bayesian prediction framework that significantly outperforms existing IRL solutions and provides smooth policy estimates consistent with the expert's plan. Most notably, our framework naturally handles situations where the intentions of the agent change over time and classical IRL algorithms fail. In addition, due to its probabilistic nature, the model can be straightforwardly applied in active learning scenarios to guide the demonstration process of the expert. |
Freie Schlagworte: | Learning from Demonstration, Inverse Reinforcement Learning, Bayesian Nonparametric Modeling, Subgoal Inference, Graphical Models, Gibbs Sampling |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-267009 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung 20 Fachbereich Informatik 20 Fachbereich Informatik > Intelligente Autonome Systeme |
Hinterlegungsdatum: | 30 Apr 2024 09:17 |
Letzte Änderung: | 13 Mai 2024 09:48 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling. (deposited 30 Apr 2024 09:17) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |