TU Darmstadt / ULB / TUbiblio

Boundary conditions for dynamic wetting - A mathematical analysis

Fricke, Mathis ; Bothe, Dieter (2024)
Boundary conditions for dynamic wetting - A mathematical analysis.
In: The European Physical Journal Special Topics, 2020, 229 (10)
doi: 10.26083/tuprints-00023991
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The moving contact line paradox discussed in the famous paper by Huh and Scriven has lead to an extensive scientific discussion about singularities in continuum mechanical models of dynamic wetting in the framework of the two-phase Navier–Stokes equations. Since the no-slip condition introduces a non-integrable and therefore unphysical singularity into the model, various models to relax the singularity have been proposed. Many of the relaxation mechanisms still retain a weak (integrable) singularity, while other approaches look for completely regular solutions with finite curvature and pressure at the moving contact line. In particular, the model introduced recently in [A.V. Lukyanov, T. Pryer, Langmuir 33, 8582 (2017)] aims for regular solutions through modified boundary conditions. The present work applies the mathematical tool of compatibility analysis to continuum models of dynamic wetting. The basic idea is that the boundary conditions have to be compatible at the contact line in order to allow for regular solutions. Remarkably, the method allows to compute explicit expressions for the pressure and the curvature locally at the moving contact line for regular solutions to the model of Lukyanov and Pryer. It is found that solutions may still be singular for the latter model.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Fricke, Mathis ; Bothe, Dieter
Art des Eintrags: Zweitveröffentlichung
Titel: Boundary conditions for dynamic wetting - A mathematical analysis
Sprache: Englisch
Publikationsjahr: 26 April 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: September 2020
Ort der Erstveröffentlichung: Berlin ; Heidelberg
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The European Physical Journal Special Topics
Jahrgang/Volume einer Zeitschrift: 229
(Heft-)Nummer: 10
DOI: 10.26083/tuprints-00023991
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23991
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The moving contact line paradox discussed in the famous paper by Huh and Scriven has lead to an extensive scientific discussion about singularities in continuum mechanical models of dynamic wetting in the framework of the two-phase Navier–Stokes equations. Since the no-slip condition introduces a non-integrable and therefore unphysical singularity into the model, various models to relax the singularity have been proposed. Many of the relaxation mechanisms still retain a weak (integrable) singularity, while other approaches look for completely regular solutions with finite curvature and pressure at the moving contact line. In particular, the model introduced recently in [A.V. Lukyanov, T. Pryer, Langmuir 33, 8582 (2017)] aims for regular solutions through modified boundary conditions. The present work applies the mathematical tool of compatibility analysis to continuum models of dynamic wetting. The basic idea is that the boundary conditions have to be compatible at the contact line in order to allow for regular solutions. Remarkably, the method allows to compute explicit expressions for the pressure and the curvature locally at the moving contact line for regular solutions to the model of Lukyanov and Pryer. It is found that solutions may still be singular for the latter model.

Freie Schlagworte: Condensed Matter Physics, Materials Science, general, Atomic, Molecular, Optical and Plasma Physics, Physics, general, Measurement Science and Instrumentation, Classical and Continuum Physics
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-239913
Zusätzliche Informationen:

Part of collection: Challenges in Nanoscale Physics of Wetting Phenomena

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Analysis
Hinterlegungsdatum: 26 Apr 2024 12:50
Letzte Änderung: 02 Mai 2024 11:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen