TU Darmstadt / ULB / TUbiblio

Deep-learned air-coupled ultrasonic sonar image enhancement and object localization

Schulte, Stefan ; Allevato, Gianni ; Haugwitz, Christoph ; Kupnik, Mario (2022)
Deep-learned air-coupled ultrasonic sonar image enhancement and object localization.
2022 IEEE Sensors. Dallas, Texas (USA) (30.10. - 02.11.2022)
doi: 10.1109/SENSORS52175.2022.9967244
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Air-coupled ultrasonic phased arrays are a complement to existing lidar-, camera- and radar-based sensors for object detection and spatial imaging. These in-air sonar systems typically use conventional beamforming (CBF) for high-frame rate image formation. Consequently, in real-world multi-target environments, the unique identification of reflectors is a challenging task due to the array-specific point spread function (PSF). Therefore, we present a neural auto-encoder network based on Xception for removing the PSF characteristics from CBF images and estimating the number of reflectors. Based on this information, the reflector coordinates are extracted by Gaussian mixture model clustering. We train and test the architecture on simulated and randomized multi-target CBF images. The performance is evaluated in terms of the localization precision, reflector count error and the angular resolution obtained. The preliminary results show a low mean error for the localization (-0.61°, -3 mm) and an accuracy of 83% for the reflector count estimation. The angular resolution of the given array can be improved from 14° to 2°. Overall, we highlight the potential of state-of-the-art auto-encoder networks, typically used for optical images, for CBF image enhancement and the combination with clustering for target localization.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Schulte, Stefan ; Allevato, Gianni ; Haugwitz, Christoph ; Kupnik, Mario
Art des Eintrags: Bibliographie
Titel: Deep-learned air-coupled ultrasonic sonar image enhancement and object localization
Sprache: Englisch
Publikationsjahr: 2022
Ort: Piscataway, NJ
Verlag: IEEE
Buchtitel: 2022 IEEE Sensors
Veranstaltungstitel: 2022 IEEE Sensors
Veranstaltungsort: Dallas, Texas (USA)
Veranstaltungsdatum: 30.10. - 02.11.2022
DOI: 10.1109/SENSORS52175.2022.9967244
URL / URN: https://ieeexplore.ieee.org/document/9967244
Kurzbeschreibung (Abstract):

Air-coupled ultrasonic phased arrays are a complement to existing lidar-, camera- and radar-based sensors for object detection and spatial imaging. These in-air sonar systems typically use conventional beamforming (CBF) for high-frame rate image formation. Consequently, in real-world multi-target environments, the unique identification of reflectors is a challenging task due to the array-specific point spread function (PSF). Therefore, we present a neural auto-encoder network based on Xception for removing the PSF characteristics from CBF images and estimating the number of reflectors. Based on this information, the reflector coordinates are extracted by Gaussian mixture model clustering. We train and test the architecture on simulated and randomized multi-target CBF images. The performance is evaluated in terms of the localization precision, reflector count error and the angular resolution obtained. The preliminary results show a low mean error for the localization (-0.61°, -3 mm) and an accuracy of 83% for the reflector count estimation. The angular resolution of the given array can be improved from 14° to 2°. Overall, we highlight the potential of state-of-the-art auto-encoder networks, typically used for optical images, for CBF image enhancement and the combination with clustering for target localization.

Freie Schlagworte: autoencoder, deconvolution, in-air sonar, neural network, phased array, Xception
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > CiP Center für industrielle Produktivität
Hinterlegungsdatum: 18 Mär 2024 06:51
Letzte Änderung: 18 Mär 2024 08:05
PPN: 516359614
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen