Bachtler, Oliver ; Heinrich, Irene (2023)
Automated testing and interactive construction of unavoidable sets for graph classes of small path‐width.
In: Journal of Graph Theory, 104 (2)
doi: 10.1002/jgt.22964
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Let G be a class of graphs with a membership test, k∈N , and let Gk be the class of graphs in G of path-width at most k. We present an interactive framework that finds an unavoidable set for Gk, which is a set of graphs U such that any graph in Gk contains an isomorphic copy of a graph in U. At the core of our framework is an algorithm that verifies whether a set of graphs is, indeed, unavoidable for Gk. While obstruction sets are well-studied, so far there is no general theory or algorithm for finding unavoidable sets. In general, it is undecidable whether a finite set of graphs is unavoidable for a given graph class. However, we give a criterion for termination: our algorithm terminates whenever G is locally checkable of bounded maximum degree and U is a finite set of connected graphs. For example, l-regular graphs, l-colourable graphs, and H-free graphs are locally checkable classes. We put special emphasis on the case that G is the class of cubic graphs and tailor the algorithm to this case. In particular, we introduce the new concept of high-degree-first path-decompositions, which enables highly efficient pruning techniques. We exploit our framework to prove a new lower bound on the path-width of cubic graphs. Moreover, we determine the extremal girth values of cubic graphs of path-width for all and all smallest graphs which take on these extremal girth values. Further, we present a new constructive characterisation of the extremal cubic graphs of path-width 3 and girth 4.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Bachtler, Oliver ; Heinrich, Irene |
Art des Eintrags: | Bibliographie |
Titel: | Automated testing and interactive construction of unavoidable sets for graph classes of small path‐width |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Ort: | New York |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Graph Theory |
Jahrgang/Volume einer Zeitschrift: | 104 |
(Heft-)Nummer: | 2 |
DOI: | 10.1002/jgt.22964 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Let G be a class of graphs with a membership test, k∈N , and let Gk be the class of graphs in G of path-width at most k. We present an interactive framework that finds an unavoidable set for Gk, which is a set of graphs U such that any graph in Gk contains an isomorphic copy of a graph in U. At the core of our framework is an algorithm that verifies whether a set of graphs is, indeed, unavoidable for Gk. While obstruction sets are well-studied, so far there is no general theory or algorithm for finding unavoidable sets. In general, it is undecidable whether a finite set of graphs is unavoidable for a given graph class. However, we give a criterion for termination: our algorithm terminates whenever G is locally checkable of bounded maximum degree and U is a finite set of connected graphs. For example, l-regular graphs, l-colourable graphs, and H-free graphs are locally checkable classes. We put special emphasis on the case that G is the class of cubic graphs and tailor the algorithm to this case. In particular, we introduce the new concept of high-degree-first path-decompositions, which enables highly efficient pruning techniques. We exploit our framework to prove a new lower bound on the path-width of cubic graphs. Moreover, we determine the extremal girth values of cubic graphs of path-width for all and all smallest graphs which take on these extremal girth values. Further, we present a new constructive characterisation of the extremal cubic graphs of path-width 3 and girth 4. |
Freie Schlagworte: | cubic graph, girth, path‐width, unavoidable structure |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Didaktik 04 Fachbereich Mathematik > Optimierung |
Hinterlegungsdatum: | 12 Mär 2024 07:55 |
Letzte Änderung: | 12 Mär 2024 07:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Automated testing and interactive construction of unavoidable sets for graph classes of small path‐width. (deposited 09 Feb 2024 13:37)
- Automated testing and interactive construction of unavoidable sets for graph classes of small path‐width. (deposited 12 Mär 2024 07:55) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |