TU Darmstadt / ULB / TUbiblio

Strong periodic solutions to quasilinear parabolic equations: An approach by the Da Prato–Grisvard theorem

Brandt, Felix ; Hieber, Matthias (2023)
Strong periodic solutions to quasilinear parabolic equations: An approach by the Da Prato–Grisvard theorem.
In: Bulletin of the London Mathematical Society, 55 (4)
doi: 10.1112/blms.12831
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

This article develops an approach to unique, strong periodic solutions to quasilinear evolution equations by means of the classical Da Prato–Grisvard theorem on maximal Lp‐regularity in real interpolation spaces. The method is used to show that quasilinear Keller–Segel systems admit a unique, strong T‐periodic solution in a neighborhood of 0 provided the external forces are T‐periodic and satisfy certain smallness conditions. A similar assertion applies to a Nernst–Planck–Poisson type system in electrochemistry. The proof for the quasilinear Keller–Segel systems relies also on a new mixed derivative theorem in real interpolation spaces, that is, Besov spaces, which is of independent interest.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Brandt, Felix ; Hieber, Matthias
Art des Eintrags: Bibliographie
Titel: Strong periodic solutions to quasilinear parabolic equations: An approach by the Da Prato–Grisvard theorem
Sprache: Englisch
Publikationsjahr: 2023
Ort: Hoboken
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Bulletin of the London Mathematical Society
Jahrgang/Volume einer Zeitschrift: 55
(Heft-)Nummer: 4
DOI: 10.1112/blms.12831
Zugehörige Links:
Kurzbeschreibung (Abstract):

This article develops an approach to unique, strong periodic solutions to quasilinear evolution equations by means of the classical Da Prato–Grisvard theorem on maximal Lp‐regularity in real interpolation spaces. The method is used to show that quasilinear Keller–Segel systems admit a unique, strong T‐periodic solution in a neighborhood of 0 provided the external forces are T‐periodic and satisfy certain smallness conditions. A similar assertion applies to a Nernst–Planck–Poisson type system in electrochemistry. The proof for the quasilinear Keller–Segel systems relies also on a new mixed derivative theorem in real interpolation spaces, that is, Besov spaces, which is of independent interest.

Zusätzliche Informationen:

MSC 2020: 35B10, 35K59, 92C17, 35Q92

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Analysis
04 Fachbereich Mathematik > Analysis > Angewandte Analysis
Hinterlegungsdatum: 13 Feb 2024 15:01
Letzte Änderung: 07 Mär 2024 14:54
PPN: 516076957
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen