TU Darmstadt / ULB / TUbiblio

Using natural language processing to support peer-feedback in the age of artificial intelligence: A cross-disciplinary framework and a research agenda

Bauer, Elisabeth ; Greisel, Martin ; Kuznetsov, Ilia ; Berndt, Markus ; Kollar, Ingo ; Dresel, Markus ; Fischer, Martin R. ; Fischer, Frank (2023)
Using natural language processing to support peer-feedback in the age of artificial intelligence: A cross-disciplinary framework and a research agenda.
In: British Journal of Educational Technology, 54 (5)
doi: 10.1111/bjet.13336
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Advancements in artificial intelligence are rapidly increasing. The new-generation large language models, such as ChatGPT and GPT-4, bear the potential to transform educational approaches, such as peer-feedback. To investigate peer-feedback at the intersection of natural language processing (NLP) and educational research, this paper suggests a cross-disciplinary framework that aims to facilitate the development of NLP-based adaptive measures for supporting peer-feedback processes in digital learning environments. To conceptualize this process, we introduce a peer-feedback process model, which describes learners' activities and textual products. Further, we introduce a terminological and procedural scheme that facilitates systematically deriving measures to foster the peer-feedback process and how NLP may enhance the adaptivity of such learning support. Building on prior research on education and NLP, we apply this scheme to all learner activities of the peer-feedback process model to exemplify a range of NLP-based adaptive support measures. We also discuss the current challenges and suggest directions for future cross-disciplinary research on the effectiveness and other dimensions of NLP-based adaptive support for peer-feedback. Building on our suggested framework, future research and collaborations at the intersection of education and NLP can innovate peer-feedback in digital learning environments.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Bauer, Elisabeth ; Greisel, Martin ; Kuznetsov, Ilia ; Berndt, Markus ; Kollar, Ingo ; Dresel, Markus ; Fischer, Martin R. ; Fischer, Frank
Art des Eintrags: Bibliographie
Titel: Using natural language processing to support peer-feedback in the age of artificial intelligence: A cross-disciplinary framework and a research agenda
Sprache: Englisch
Publikationsjahr: September 2023
Verlag: John Wiley & Sons
Titel der Zeitschrift, Zeitung oder Schriftenreihe: British Journal of Educational Technology
Jahrgang/Volume einer Zeitschrift: 54
(Heft-)Nummer: 5
DOI: 10.1111/bjet.13336
Zugehörige Links:
Kurzbeschreibung (Abstract):

Advancements in artificial intelligence are rapidly increasing. The new-generation large language models, such as ChatGPT and GPT-4, bear the potential to transform educational approaches, such as peer-feedback. To investigate peer-feedback at the intersection of natural language processing (NLP) and educational research, this paper suggests a cross-disciplinary framework that aims to facilitate the development of NLP-based adaptive measures for supporting peer-feedback processes in digital learning environments. To conceptualize this process, we introduce a peer-feedback process model, which describes learners' activities and textual products. Further, we introduce a terminological and procedural scheme that facilitates systematically deriving measures to foster the peer-feedback process and how NLP may enhance the adaptivity of such learning support. Building on prior research on education and NLP, we apply this scheme to all learner activities of the peer-feedback process model to exemplify a range of NLP-based adaptive support measures. We also discuss the current challenges and suggest directions for future cross-disciplinary research on the effectiveness and other dimensions of NLP-based adaptive support for peer-feedback. Building on our suggested framework, future research and collaborations at the intersection of education and NLP can innovate peer-feedback in digital learning environments.

Freie Schlagworte: UKP_p_FAMULUS
Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 05 Mär 2024 15:49
Letzte Änderung: 07 Mär 2024 14:47
PPN: 516076523
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen