TU Darmstadt / ULB / TUbiblio

Development of a PHEV hybrid transmission for low-end MPVs based on AMT

Zhen, Yongcheng ; Bao, Yong ; Zhong, Zaimin ; Rinderknecht, Stephan ; Zhou, Song (2020)
Development of a PHEV hybrid transmission for low-end MPVs based on AMT.
In: Vehicles, 2 (2)
doi: 10.3390/vehicles2020013
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In order to improve the fuel economy of vehicles, based on the automated mechanical transmission (AMT), a plug-in hybrid electric vehicle (PHEV) hybrid transmission for low-end multi-purpose vehicles (MPVs) is developed. To obtain the statistics of the best-selling models, we took several best-selling models in the Chinese market as the research object to study the relationship between power demand, energy demand, weight, and cost. The power requirements and energy requirements of PHEVs are decoupled. According to the decoupled theory, a single-motor parallel scheme based on the AMT is adopted to develop a PHEV hybrid transmission. In the distribution of engine and motor power, the engine just needs to meet the vehicle’s constant driving power, and the backup power can be provided by the motor, which means we can use an engine with a smaller power rating. The energy of short-distance travel is mainly provided by the motor, which can make full use of the battery, reducing the fuel consumption. The energy of long-distance travel is mainly provided by the engine, which can reduce the need for battery capacity. The working modes of the electrified mechanical transmission (EMT) are proposed, using P3 as the basic working mode and setting the P2 mode at the same time, and the gear ratios are designed. Based on the above basic scheme, two rounds of prototype development and assembling prototype vehicles for testing are carried out for the front-engine-front-drive (FF) layout. The test results show that the vehicle’s economy has been improved compared to the unmodified vehicle, and the fuel-saving rate of 100 kilometers has been achieved at 35.18%. The prototype development and the vehicle matching verify the effectiveness of the new configuration based on AMT.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Zhen, Yongcheng ; Bao, Yong ; Zhong, Zaimin ; Rinderknecht, Stephan ; Zhou, Song
Art des Eintrags: Bibliographie
Titel: Development of a PHEV hybrid transmission for low-end MPVs based on AMT
Sprache: Englisch
Publikationsjahr: 2020
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Vehicles
Jahrgang/Volume einer Zeitschrift: 2
(Heft-)Nummer: 2
DOI: 10.3390/vehicles2020013
Zugehörige Links:
Kurzbeschreibung (Abstract):

In order to improve the fuel economy of vehicles, based on the automated mechanical transmission (AMT), a plug-in hybrid electric vehicle (PHEV) hybrid transmission for low-end multi-purpose vehicles (MPVs) is developed. To obtain the statistics of the best-selling models, we took several best-selling models in the Chinese market as the research object to study the relationship between power demand, energy demand, weight, and cost. The power requirements and energy requirements of PHEVs are decoupled. According to the decoupled theory, a single-motor parallel scheme based on the AMT is adopted to develop a PHEV hybrid transmission. In the distribution of engine and motor power, the engine just needs to meet the vehicle’s constant driving power, and the backup power can be provided by the motor, which means we can use an engine with a smaller power rating. The energy of short-distance travel is mainly provided by the motor, which can make full use of the battery, reducing the fuel consumption. The energy of long-distance travel is mainly provided by the engine, which can reduce the need for battery capacity. The working modes of the electrified mechanical transmission (EMT) are proposed, using P3 as the basic working mode and setting the P2 mode at the same time, and the gear ratios are designed. Based on the above basic scheme, two rounds of prototype development and assembling prototype vehicles for testing are carried out for the front-engine-front-drive (FF) layout. The test results show that the vehicle’s economy has been improved compared to the unmodified vehicle, and the fuel-saving rate of 100 kilometers has been achieved at 35.18%. The prototype development and the vehicle matching verify the effectiveness of the new configuration based on AMT.

Freie Schlagworte: hybrid electric vehicle, plug-in hybrid electric vehicle, electromechanical coupling, dedicated hybrid transmission, electrified mechanical transmission, multi-purpose vehicle
Zusätzliche Informationen:

This article belongs to the Special Issue Future Powertrain Technologies

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Mechatronische Systeme im Maschinenbau (IMS)
Hinterlegungsdatum: 15 Jan 2024 09:36
Letzte Änderung: 16 Jan 2024 09:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen