TU Darmstadt / ULB / TUbiblio

Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative LifeCycle Greenhouse Gas Emissions until 2050

Blat Belmonte, Benjamin ; Esser, Arved ; Weyand, Steffi ; Franke, Georg ; Schebek, Liselotte ; Rinderknecht, Stephan (2024)
Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative LifeCycle Greenhouse Gas Emissions until 2050.
In: Vehicles, 2020, 2 (1)
doi: 10.26083/tuprints-00022274
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We present an optimization model for the passenger car vehicle fleet transition—the time-dependent fleet composition—in Germany until 2050. The goal was to minimize the cumulative greenhouse gas (GHG) emissions of the vehicle fleet taking into account life-cycle assessment (LCA) data. LCAs provide information on the global warming potential (GWP) of different powertrain concepts. Meta-analyses of batteries, of different fuel types, and of the German energy sector are conducted to support the model. Furthermore, a sensitivity-analysis is performed on four key influence parameters: the battery production emissions trend, the German energy sector trend, the hydrogen production path trend, and the mobility sector trend. Overall, we draw the conclusion that—in any scenario—future vehicles should have a plug-in option, allowing their usage as fully or partly electrical vehicles. For short distance trips, battery electric vehicles (BEVs) with a small battery size are the most reasonable choice throughout the transition. Plug-in hybrid electric vehicles (PHEVs) powered by compressed natural gas (CNG) emerge as promising long-range capable solution. Starting in 2040, long-range capable BEVs and fuel cell plug-in hybrid electric vehicles (FCPHEVs) have similar life-cycle emissions as PHEV-CNG.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Blat Belmonte, Benjamin ; Esser, Arved ; Weyand, Steffi ; Franke, Georg ; Schebek, Liselotte ; Rinderknecht, Stephan
Art des Eintrags: Zweitveröffentlichung
Titel: Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative LifeCycle Greenhouse Gas Emissions until 2050
Sprache: Englisch
Publikationsjahr: 12 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Vehicles
Jahrgang/Volume einer Zeitschrift: 2
(Heft-)Nummer: 1
Kollation: 26 Seiten
DOI: 10.26083/tuprints-00022274
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22274
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We present an optimization model for the passenger car vehicle fleet transition—the time-dependent fleet composition—in Germany until 2050. The goal was to minimize the cumulative greenhouse gas (GHG) emissions of the vehicle fleet taking into account life-cycle assessment (LCA) data. LCAs provide information on the global warming potential (GWP) of different powertrain concepts. Meta-analyses of batteries, of different fuel types, and of the German energy sector are conducted to support the model. Furthermore, a sensitivity-analysis is performed on four key influence parameters: the battery production emissions trend, the German energy sector trend, the hydrogen production path trend, and the mobility sector trend. Overall, we draw the conclusion that—in any scenario—future vehicles should have a plug-in option, allowing their usage as fully or partly electrical vehicles. For short distance trips, battery electric vehicles (BEVs) with a small battery size are the most reasonable choice throughout the transition. Plug-in hybrid electric vehicles (PHEVs) powered by compressed natural gas (CNG) emerge as promising long-range capable solution. Starting in 2040, long-range capable BEVs and fuel cell plug-in hybrid electric vehicles (FCPHEVs) have similar life-cycle emissions as PHEV-CNG.

Freie Schlagworte: fleet transition, optimization, lifecycle assessment, greenhouse gas, global warming potential, vehicle powertrain concepts
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-222744
Zusätzliche Informationen:

This article belongs to the Special Issue Future Powertrain Technologies

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung > Fachgebiet Stoffstrommanagement und Ressourcenwirtschaft
16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Mechatronische Systeme im Maschinenbau (IMS)
Hinterlegungsdatum: 12 Jan 2024 13:43
Letzte Änderung: 15 Jan 2024 14:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen