TU Darmstadt / ULB / TUbiblio

Indentation densification of fused silica assessed by raman spectroscopy and constitutive finite element analysis

Bruns, Sebastian ; Uesbeck, Tobias ; Fuhrmann, Sindy ; Tarragó Aymerich, Mariona ; Wondraczek, Lothar ; Ligny, Dominique de ; Durst, Karsten (2024)
Indentation densification of fused silica assessed by raman spectroscopy and constitutive finite element analysis.
In: Journal of the American Ceramic Society, 2020, 103 (5)
doi: 10.26083/tuprints-00015639
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Inelastic deformation of anomalous glasses manifests in shear flow and densification of the glass network; the deformation behavior during indentation testing is linked strongly to both processes. In this paper, the indentation densification field of fused silica is investigated using depth‐resolved Raman spectroscopy and finite element simulations. Through affecting the size of the indent, the normal load and the Raman laser spot size determine the spatial sampling resolution, leading to a certain degree of structural averaging. For appropriate combinations of normal load (indent size) and laser spot diameter, a maximum densification of 18.4% was found at the indent center. The indentation behavior was modeled by extended Drucker‐Prager‐Cap (DPC) plasticity, assuming a sigmoidal hardening behavior of fused silica with a densification saturation of 21%. This procedure significantly improved the reproduction of the experimental densification field, yielding a maximum densification of 18.2% directly below the indenter tip. The degree of densification was found to be strongly linked to the hydrostatic pressure limit below the indenter in accordance to Johnson's expanding cavity model (J. Mech. Phys. Solids, 18 (1970) 115). Based on the good overlap between FEA and Raman, an alternative way to extract the empirical correlation factor m, which scales structural densification to Raman spectroscopic observations, is obtained. This approach does not require the use of intensive hydrostatic compaction experiments.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Bruns, Sebastian ; Uesbeck, Tobias ; Fuhrmann, Sindy ; Tarragó Aymerich, Mariona ; Wondraczek, Lothar ; Ligny, Dominique de ; Durst, Karsten
Art des Eintrags: Zweitveröffentlichung
Titel: Indentation densification of fused silica assessed by raman spectroscopy and constitutive finite element analysis
Sprache: Englisch
Publikationsjahr: 9 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Oxford
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 103
(Heft-)Nummer: 5
DOI: 10.26083/tuprints-00015639
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15639
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Inelastic deformation of anomalous glasses manifests in shear flow and densification of the glass network; the deformation behavior during indentation testing is linked strongly to both processes. In this paper, the indentation densification field of fused silica is investigated using depth‐resolved Raman spectroscopy and finite element simulations. Through affecting the size of the indent, the normal load and the Raman laser spot size determine the spatial sampling resolution, leading to a certain degree of structural averaging. For appropriate combinations of normal load (indent size) and laser spot diameter, a maximum densification of 18.4% was found at the indent center. The indentation behavior was modeled by extended Drucker‐Prager‐Cap (DPC) plasticity, assuming a sigmoidal hardening behavior of fused silica with a densification saturation of 21%. This procedure significantly improved the reproduction of the experimental densification field, yielding a maximum densification of 18.2% directly below the indenter tip. The degree of densification was found to be strongly linked to the hydrostatic pressure limit below the indenter in accordance to Johnson's expanding cavity model (J. Mech. Phys. Solids, 18 (1970) 115). Based on the good overlap between FEA and Raman, an alternative way to extract the empirical correlation factor m, which scales structural densification to Raman spectroscopic observations, is obtained. This approach does not require the use of intensive hydrostatic compaction experiments.

Freie Schlagworte: densification, drucker‐prager‐cap plasticity, finite element analysis, fused silica, indentation, Raman Spectroscopy
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-156396
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 09 Jan 2024 12:43
Letzte Änderung: 10 Jan 2024 09:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen