TU Darmstadt / ULB / TUbiblio

Silicon Oxycarbide-Graphite Electrodes for High-Power Energy Storage Devices

Knozowski, Dominik ; Graczyk-Zajac, Magdalena ; Trykowski, Grzegorz ; Wilamowska-Zawłocka, Monika (2023)
Silicon Oxycarbide-Graphite Electrodes for High-Power Energy Storage Devices.
In: Materials, 2020, 13 (19)
doi: 10.26083/tuprints-00015952
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Herein we present a study on polymer-derived silicon oxycarbide (SiOC)/graphite composites for a potential application as an electrode in high power energy storage devices, such as Lithium-Ion Capacitor (LIC). The composites were processed using high power ultrasound-assisted sol-gel synthesis followed by pyrolysis. The intensive sonication enhances gelation and drying process, improving the homogenous distribution of the graphitic flakes in the preceramic blends. The physicochemical investigation of SiOC/graphite composites using X-ray diffraction, ²⁹Si solid state NMR and Raman spectroscopy indicated no reaction occurring between the components. The electrochemical measurements revealed enhanced capacity (by up to 63%) at high current rates (1.86 A g⁻¹) recorded for SiOC/graphite composite compared to the pure components. Moreover, the addition of graphite to the SiOC matrix decreased the value of delithiation potential, which is a desirable feature for anodes in LIC.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Knozowski, Dominik ; Graczyk-Zajac, Magdalena ; Trykowski, Grzegorz ; Wilamowska-Zawłocka, Monika
Art des Eintrags: Zweitveröffentlichung
Titel: Silicon Oxycarbide-Graphite Electrodes for High-Power Energy Storage Devices
Sprache: Englisch
Publikationsjahr: 1 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 19
Kollation: 17 Seiten
DOI: 10.26083/tuprints-00015952
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15952
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Herein we present a study on polymer-derived silicon oxycarbide (SiOC)/graphite composites for a potential application as an electrode in high power energy storage devices, such as Lithium-Ion Capacitor (LIC). The composites were processed using high power ultrasound-assisted sol-gel synthesis followed by pyrolysis. The intensive sonication enhances gelation and drying process, improving the homogenous distribution of the graphitic flakes in the preceramic blends. The physicochemical investigation of SiOC/graphite composites using X-ray diffraction, ²⁹Si solid state NMR and Raman spectroscopy indicated no reaction occurring between the components. The electrochemical measurements revealed enhanced capacity (by up to 63%) at high current rates (1.86 A g⁻¹) recorded for SiOC/graphite composite compared to the pure components. Moreover, the addition of graphite to the SiOC matrix decreased the value of delithiation potential, which is a desirable feature for anodes in LIC.

Freie Schlagworte: Silicon Oxycarbide (SiOC), graphite, composites, energy storage, lithium-ion capacitor (LIC)
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-159525
Zusätzliche Informationen:

This article belongs to the Special Issue Electrode Materials for Energy Storage Applications

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 01 Dez 2023 14:01
Letzte Änderung: 04 Dez 2023 12:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen