TU Darmstadt / ULB / TUbiblio

GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows

Pati, Sarthak ; Thakur, Siddhesh P. ; Hamamcı, İbrahim Ethem ; Baid, Ujjwal ; Baheti, Bhakti ; Bhalerao, Megh ; Güley, Orhun ; Mouchtaris, Sofia ; Lang, David ; Thermos, Spyridon ; Gotkowski, Karol ; González, Camila ; Grenko, Caleb ; Getka, Alexander ; Edwards, Brandon ; Sheller, Micah ; Wu, Junwen ; Karkada, Deepthi ; Panchumarthy, Ravi ; Ahluwalia, Vinayak ; Zou, Chunrui ; Bashyam, Vishnu ; Li, Yuemeng ; Haghighi, Babak ; Chitalia, Rhea ; Abousamra, Shahira ; Kurc, Tahsin M. ; Gastounioti, Aimilia ; Er, Sezgin ; Bergman, Mark ; Saltz, Joel H. ; Fan, Yong ; Shah, Prashant ; Mukhopadhyay, Anirban ; Tsaftaris, Sotirios A. ; Menze, Bjoern ; Davatzikos, Christos ; Kontos, Despina ; Karargyris, Alexandros ; Umeton, Renato ; Mattson, Peter ; Bakas, Spyridon (2023)
GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows.
In: Communications Engineering, 2 (1)
doi: 10.1038/s44172-023-00066-3
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k-fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Pati, Sarthak ; Thakur, Siddhesh P. ; Hamamcı, İbrahim Ethem ; Baid, Ujjwal ; Baheti, Bhakti ; Bhalerao, Megh ; Güley, Orhun ; Mouchtaris, Sofia ; Lang, David ; Thermos, Spyridon ; Gotkowski, Karol ; González, Camila ; Grenko, Caleb ; Getka, Alexander ; Edwards, Brandon ; Sheller, Micah ; Wu, Junwen ; Karkada, Deepthi ; Panchumarthy, Ravi ; Ahluwalia, Vinayak ; Zou, Chunrui ; Bashyam, Vishnu ; Li, Yuemeng ; Haghighi, Babak ; Chitalia, Rhea ; Abousamra, Shahira ; Kurc, Tahsin M. ; Gastounioti, Aimilia ; Er, Sezgin ; Bergman, Mark ; Saltz, Joel H. ; Fan, Yong ; Shah, Prashant ; Mukhopadhyay, Anirban ; Tsaftaris, Sotirios A. ; Menze, Bjoern ; Davatzikos, Christos ; Kontos, Despina ; Karargyris, Alexandros ; Umeton, Renato ; Mattson, Peter ; Bakas, Spyridon
Art des Eintrags: Bibliographie
Titel: GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows
Sprache: Englisch
Publikationsjahr: 16 Mai 2023
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Communications Engineering
Jahrgang/Volume einer Zeitschrift: 2
(Heft-)Nummer: 1
DOI: 10.1038/s44172-023-00066-3
Kurzbeschreibung (Abstract):

Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k-fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows.

Freie Schlagworte: Deep learning, Radiology, Pathology, Medical diagnosis
Zusätzliche Informationen:

Art.No.: 23

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 04 Dez 2023 12:34
Letzte Änderung: 30 Jan 2024 13:53
PPN: 515140449
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen