TU Darmstadt / ULB / TUbiblio

Hierarchical microstructure growth in a precursor‐derived SiOC thin film prepared on silicon substrate

Ricohermoso, Emmanuel III ; Heripre, Eva ; Solano‐Arana, Susana ; Riedel, Ralf ; Ionescu, Emanuel (2023)
Hierarchical microstructure growth in a precursor‐derived SiOC thin film prepared on silicon substrate.
In: International Journal of Applied Ceramic Technology, 2023, 20 (2)
doi: 10.26083/tuprints-00023705
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Silicon oxycarbide film deposited on a silicon substrate has shown superior electrical conductivity relative to its monolithic counterpart. In this work, the evolution of different microstructures detected on the SiOC film reveals its hierarchical microstructure. The existence of sp²‐hybridized carbon domains has been unambiguously confirmed by means of Raman spectroscopy and transmission electron microscopy corroborated with electron energy loss spectroscopy. The diffusion coefficient of carbon in silica and its dependence on temperature were studied by assessing energy‐dispersive X‐ray spectroscopy profiles taken from the cross‐sections of samples annealed at temperatures in the range from 1100°C to 1400°C. The activation energy for diffusion of carbon in silica was determined to be approximately 3.05 eV, which is significantly lower than the values related to the self‐diffusion of silicon and oxygen. The microstructural evolution of precursor to SiCnO₄-n and SiC serves as migration path of sp²‐hybridized carbon to the SiOₓ layer. With increasing temperature, the formation of microscale carbon‐rich segregation is promoted while the SiOC film becomes thinner.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Ricohermoso, Emmanuel III ; Heripre, Eva ; Solano‐Arana, Susana ; Riedel, Ralf ; Ionescu, Emanuel
Art des Eintrags: Zweitveröffentlichung
Titel: Hierarchical microstructure growth in a precursor‐derived SiOC thin film prepared on silicon substrate
Sprache: Englisch
Publikationsjahr: 28 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Oxford
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Applied Ceramic Technology
Jahrgang/Volume einer Zeitschrift: 20
(Heft-)Nummer: 2
DOI: 10.26083/tuprints-00023705
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23705
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Silicon oxycarbide film deposited on a silicon substrate has shown superior electrical conductivity relative to its monolithic counterpart. In this work, the evolution of different microstructures detected on the SiOC film reveals its hierarchical microstructure. The existence of sp²‐hybridized carbon domains has been unambiguously confirmed by means of Raman spectroscopy and transmission electron microscopy corroborated with electron energy loss spectroscopy. The diffusion coefficient of carbon in silica and its dependence on temperature were studied by assessing energy‐dispersive X‐ray spectroscopy profiles taken from the cross‐sections of samples annealed at temperatures in the range from 1100°C to 1400°C. The activation energy for diffusion of carbon in silica was determined to be approximately 3.05 eV, which is significantly lower than the values related to the self‐diffusion of silicon and oxygen. The microstructural evolution of precursor to SiCnO₄-n and SiC serves as migration path of sp²‐hybridized carbon to the SiOₓ layer. With increasing temperature, the formation of microscale carbon‐rich segregation is promoted while the SiOC film becomes thinner.

Freie Schlagworte: carbon segregation, growth kinetics, polymer‐derived ceramics, thin films
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-237056
Zusätzliche Informationen:

Special Issue: Emergent Materials and Sustainable Manufacturing Technologies in a Global Landscape

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Integrierte Mikro-Nano-Systeme
Hinterlegungsdatum: 28 Nov 2023 13:55
Letzte Änderung: 29 Nov 2023 10:19
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen