TU Darmstadt / ULB / TUbiblio

Designing for Robotic (Dis-)Assembly

Esmaeili Charkhab, Mehrzad ; Liu, Yuxi ; Belousov, Boris ; Peters, Jan ; Tessmann, Oliver
Hrsg.: Dörfler, Kathrin ; Knippers, Jan ; Menges, Achim ; Parascho, Stefana ; Pottmann, Helmut ; Wortmann, Thomas ; TU Darmstadt (2023)
Designing for Robotic (Dis-)Assembly.
Advances in Architectural Geometry 2023. University of Stuttgart (06-07.10.2023)
doi: 10.1515/9783111162683-021
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Geometrically interlocking building elements offer unique opportunities for the construction industry to minimize waste, maximize reuse, and reduce its carbon footprint. Dry-joint elements allow for fast robotic assembly, disassembly, and reassembly of complex structures out of prefabricated modules. The article discusses the robotic assembly of SL blocks, which are modules that interlock with each other. The assembly process is challenging due to the intricate assembly sequences, design hierarchies, numerous potential grasping points, contact-rich assemblies, and instability until the assembly is completed. To implement the robotic assembly of self-interlocking structures, advances in several research scopes are necessary, including geometry, algorithms, and implementation. The study aimed to co-evolve SL block geometry and robotic grippers using a robot-oriented design approach to compensate for tolerances and add self-centering features. The article also presents an assembly environment that includes mechanical fixation cubes to secure the SL blocks during assembly and support cantilevered sections of the structure until the aggregation is stable. The article presents algorithms for robotic task and motion planning and the generation of assembly sequences inspired by recursive algorithms to design 3D interlocking puzzles and directional blocking graphs. The study highlights how the voxel-based representation of complex geometries can be used to prepare directional blocking graphs. The research provides insights into improving the element’s geometry and robotic assembly, which could have significant applications in other studies.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Herausgeber: Dörfler, Kathrin ; Knippers, Jan ; Menges, Achim ; Parascho, Stefana ; Pottmann, Helmut ; Wortmann, Thomas
Autor(en): Esmaeili Charkhab, Mehrzad ; Liu, Yuxi ; Belousov, Boris ; Peters, Jan ; Tessmann, Oliver
Art des Eintrags: Bibliographie
Titel: Designing for Robotic (Dis-)Assembly
Sprache: Englisch
Publikationsjahr: 1 Oktober 2023
Ort: Berlin
Verlag: De Gruyter
Buchtitel: Advances in Architectural Geometry 2023
Reihe: De Gruyter STEM
Veranstaltungstitel: Advances in Architectural Geometry 2023
Veranstaltungsort: University of Stuttgart
Veranstaltungsdatum: 06-07.10.2023
DOI: 10.1515/9783111162683-021
Zugehörige Links:
Kurzbeschreibung (Abstract):

Geometrically interlocking building elements offer unique opportunities for the construction industry to minimize waste, maximize reuse, and reduce its carbon footprint. Dry-joint elements allow for fast robotic assembly, disassembly, and reassembly of complex structures out of prefabricated modules. The article discusses the robotic assembly of SL blocks, which are modules that interlock with each other. The assembly process is challenging due to the intricate assembly sequences, design hierarchies, numerous potential grasping points, contact-rich assemblies, and instability until the assembly is completed. To implement the robotic assembly of self-interlocking structures, advances in several research scopes are necessary, including geometry, algorithms, and implementation. The study aimed to co-evolve SL block geometry and robotic grippers using a robot-oriented design approach to compensate for tolerances and add self-centering features. The article also presents an assembly environment that includes mechanical fixation cubes to secure the SL blocks during assembly and support cantilevered sections of the structure until the aggregation is stable. The article presents algorithms for robotic task and motion planning and the generation of assembly sequences inspired by recursive algorithms to design 3D interlocking puzzles and directional blocking graphs. The study highlights how the voxel-based representation of complex geometries can be used to prepare directional blocking graphs. The research provides insights into improving the element’s geometry and robotic assembly, which could have significant applications in other studies.

Freie Schlagworte: topologically interlocking, robotic assembly/disassembly, task planning, robotic-material oriented design, directional blocking graph, SL blocks
Fachbereich(e)/-gebiet(e): 15 Fachbereich Architektur
15 Fachbereich Architektur > Fachgruppe B: Gestalten und Darstellen
15 Fachbereich Architektur > Fachgruppe B: Gestalten und Darstellen > Digitales Gestalten
Hinterlegungsdatum: 29 Nov 2023 17:19
Letzte Änderung: 08 Dez 2023 10:39
PPN: 513922105
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen