TU Darmstadt / ULB / TUbiblio

Room Temperature Viscous Flow of Amorphous Silica Induced by Electron Beam Irradiation

Bruns, Sebastian ; Minnert, Christian ; Pethö, Laszlo ; Michler, Johann ; Durst, Karsten (2023)
Room Temperature Viscous Flow of Amorphous Silica Induced by Electron Beam Irradiation.
In: Advanced Science, 2023, 10 (7)
doi: 10.26083/tuprints-00023715
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The increasing use of oxide glasses in high‐tech applications illustrates the demand of novel engineering techniques on nano‐ and microscale. Due to the high viscosity of oxide glasses at room temperature, shaping operations are usually performed at temperatures close or beyond the point of glass transition Tg. Those treatments, however, are global and affect the whole component. It is known from the literature that electron irradiation facilitates the viscous flow of amorphous silica near room temperature for nanoscale components. At the micrometer scale, however, a comprehensive study on this topic is still pending. In the present study, electron irradiation inducing viscous flow at room temperature is observed using a micropillar compression approach and amorphous silica as a model system. A comparison to high temperature yielding up to a temperature of 1100 °C demonstrates that even moderate electron irradiation resembles the mechanical response of 600 °C and beyond. As an extreme case, a yield strength as low as 300 MPa is observed with a viscosity indicating that Tg has been passed. Those results show that electron irradiation‐facilitated viscous flow is not limited to the nanoscale which offers great potential for local microengineering.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Bruns, Sebastian ; Minnert, Christian ; Pethö, Laszlo ; Michler, Johann ; Durst, Karsten
Art des Eintrags: Zweitveröffentlichung
Titel: Room Temperature Viscous Flow of Amorphous Silica Induced by Electron Beam Irradiation
Sprache: Englisch
Publikationsjahr: 27 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 7
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00023715
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23715
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The increasing use of oxide glasses in high‐tech applications illustrates the demand of novel engineering techniques on nano‐ and microscale. Due to the high viscosity of oxide glasses at room temperature, shaping operations are usually performed at temperatures close or beyond the point of glass transition Tg. Those treatments, however, are global and affect the whole component. It is known from the literature that electron irradiation facilitates the viscous flow of amorphous silica near room temperature for nanoscale components. At the micrometer scale, however, a comprehensive study on this topic is still pending. In the present study, electron irradiation inducing viscous flow at room temperature is observed using a micropillar compression approach and amorphous silica as a model system. A comparison to high temperature yielding up to a temperature of 1100 °C demonstrates that even moderate electron irradiation resembles the mechanical response of 600 °C and beyond. As an extreme case, a yield strength as low as 300 MPa is observed with a viscosity indicating that Tg has been passed. Those results show that electron irradiation‐facilitated viscous flow is not limited to the nanoscale which offers great potential for local microengineering.

Freie Schlagworte: amorphous silica, electron beam irradiation, high temperature testing, micropillar compression, nanoindentation, viscosity
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-237155
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 27 Nov 2023 14:07
Letzte Änderung: 28 Nov 2023 06:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen