Schneider, Christian ; Schmidt, Christoph P. ; Neumann, Anton ; Clausnitzer, Moritz ; Sadowski, Marcel ; Harm, Sascha ; Meier, Christoph ; Danner, Timo ; Albe, Karsten ; Latz, Arnulf ; Wall, Wolfgang A. ; Lotsch, Bettina V. (2023)
Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t‐Li₇SiPS₈.
In: Advanced Energy Materials, 2023, 13 (15)
doi: 10.26083/tuprints-00024316
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
All‐solid‐state batteries promise higher energy and power densities as well as increased safety compared to lithium‐ion batteries by using non‐flammable solid electrolytes and metallic lithium as the anode. Ensuring permanent and close contact between the components and individual particles is crucial for long‐term operation of a solid‐state cell. This study investigates the particle size dependent compression mechanics and ionic conductivity of the mechanically soft thiophosphate solid electrolyte tetragonal Li₇SiPS₈ (t‐LiSiPS) under pressure. The effect of stack and pelletizing pressure is demonstrated as a powerful tool to influence the microstructure and, hence, ionic conductivity of t‐LiSiPS. Heckel analysis for granular powder compression reveals distinct pressure regimes, which differently impact the Li ion conductivity. The pelletizing process is simulated using the discrete element method followed by finite volume analysis to disentangle the effects of pressure‐dependent microstructure evolution from atomistic activation volume effects. Furthermore, it is found that the relative density of a tablet is a weaker descriptor for the sample's impedance compared to the particle size distribution. The multiscale experimental and theoretical study thus captures both atomistic and microstructural effects of pressure on the ionic conductivity, thus emphasizing the importance of microstructure, particle size distribution and pressure control in solid electrolytes.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Schneider, Christian ; Schmidt, Christoph P. ; Neumann, Anton ; Clausnitzer, Moritz ; Sadowski, Marcel ; Harm, Sascha ; Meier, Christoph ; Danner, Timo ; Albe, Karsten ; Latz, Arnulf ; Wall, Wolfgang A. ; Lotsch, Bettina V. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t‐Li₇SiPS₈ |
Sprache: | Englisch |
Publikationsjahr: | 24 November 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2023 |
Ort der Erstveröffentlichung: | Weinheim |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Energy Materials |
Jahrgang/Volume einer Zeitschrift: | 13 |
(Heft-)Nummer: | 15 |
Kollation: | 11 Seiten |
DOI: | 10.26083/tuprints-00024316 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/24316 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | All‐solid‐state batteries promise higher energy and power densities as well as increased safety compared to lithium‐ion batteries by using non‐flammable solid electrolytes and metallic lithium as the anode. Ensuring permanent and close contact between the components and individual particles is crucial for long‐term operation of a solid‐state cell. This study investigates the particle size dependent compression mechanics and ionic conductivity of the mechanically soft thiophosphate solid electrolyte tetragonal Li₇SiPS₈ (t‐LiSiPS) under pressure. The effect of stack and pelletizing pressure is demonstrated as a powerful tool to influence the microstructure and, hence, ionic conductivity of t‐LiSiPS. Heckel analysis for granular powder compression reveals distinct pressure regimes, which differently impact the Li ion conductivity. The pelletizing process is simulated using the discrete element method followed by finite volume analysis to disentangle the effects of pressure‐dependent microstructure evolution from atomistic activation volume effects. Furthermore, it is found that the relative density of a tablet is a weaker descriptor for the sample's impedance compared to the particle size distribution. The multiscale experimental and theoretical study thus captures both atomistic and microstructural effects of pressure on the ionic conductivity, thus emphasizing the importance of microstructure, particle size distribution and pressure control in solid electrolytes. |
Freie Schlagworte: | all‐solid‐state batteries, impedance, ionic conductivity, particle size distribution, pressure, thiophosphates |
ID-Nummer: | 2203873 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-243162 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 540 Chemie 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung |
Hinterlegungsdatum: | 24 Nov 2023 13:33 |
Letzte Änderung: | 27 Nov 2023 07:35 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t‐Li₇SiPS₈. (deposited 24 Nov 2023 13:33) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |