TU Darmstadt / ULB / TUbiblio

Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t-Li7SiPS8

Schneider, Christian ; Schmidt, Christoph P. ; Neumann, Anton ; Clausnitzer, Moritz ; Sadowski, Marcel ; Harm, Sascha ; Meier, Christoph ; Danner, Timo ; Albe, Karsten ; Latz, Arnulf ; Wall, Wolfgang A. ; Lotsch, Bettina V. (2023)
Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t-Li7SiPS8.
In: Advanced Energy Materials
doi: 10.1002/aenm.202203873
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

All-solid-state batteries promise higher energy and power densities as well as increased safety compared to lithium-ion batteries by using non-flammable solid electrolytes and metallic lithium as the anode. Ensuring permanent and close contact between the components and individual particles is crucial for long-term operation of a solid-state cell. This study investigates the particle size dependent compression mechanics and ionic conductivity of the mechanically soft thiophosphate solid electrolyte tetragonal Li7SiPS8 (t-LiSiPS) under pressure. The effect of stack and pelletizing pressure is demonstrated as a powerful tool to influence the microstructure and, hence, ionic conductivity of t-LiSiPS. Heckel analysis for granular powder compression reveals distinct pressure regimes, which differently impact the Li ion conductivity. The pelletizing process is simulated using the discrete element method followed by finite volume analysis to disentangle the effects of pressure-dependent microstructure evolution from atomistic activation volume effects. Furthermore, it is found that the relative density of a tablet is a weaker descriptor for the sample's impedance compared to the particle size distribution. The multiscale experimental and theoretical study thus captures both atomistic and microstructural effects of pressure on the ionic conductivity, thus emphasizing the importance of microstructure, particle size distribution and pressure control in solid electrolytes.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Schneider, Christian ; Schmidt, Christoph P. ; Neumann, Anton ; Clausnitzer, Moritz ; Sadowski, Marcel ; Harm, Sascha ; Meier, Christoph ; Danner, Timo ; Albe, Karsten ; Latz, Arnulf ; Wall, Wolfgang A. ; Lotsch, Bettina V.
Art des Eintrags: Bibliographie
Titel: Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t-Li7SiPS8
Sprache: Englisch
Publikationsjahr: 3 März 2023
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Energy Materials
Kollation: 11 Seiten
DOI: 10.1002/aenm.202203873
Zugehörige Links:
Kurzbeschreibung (Abstract):

All-solid-state batteries promise higher energy and power densities as well as increased safety compared to lithium-ion batteries by using non-flammable solid electrolytes and metallic lithium as the anode. Ensuring permanent and close contact between the components and individual particles is crucial for long-term operation of a solid-state cell. This study investigates the particle size dependent compression mechanics and ionic conductivity of the mechanically soft thiophosphate solid electrolyte tetragonal Li7SiPS8 (t-LiSiPS) under pressure. The effect of stack and pelletizing pressure is demonstrated as a powerful tool to influence the microstructure and, hence, ionic conductivity of t-LiSiPS. Heckel analysis for granular powder compression reveals distinct pressure regimes, which differently impact the Li ion conductivity. The pelletizing process is simulated using the discrete element method followed by finite volume analysis to disentangle the effects of pressure-dependent microstructure evolution from atomistic activation volume effects. Furthermore, it is found that the relative density of a tablet is a weaker descriptor for the sample's impedance compared to the particle size distribution. The multiscale experimental and theoretical study thus captures both atomistic and microstructural effects of pressure on the ionic conductivity, thus emphasizing the importance of microstructure, particle size distribution and pressure control in solid electrolytes.

Freie Schlagworte: all-solid-state batteries, impedance, ionic conductivity, particle size distribution, pressure, thiophosphat, 03XP0177B (FestBatt I), 03XP043B (FestBatt II)
Zusätzliche Informationen:

Artikel-ID: 2203873

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 13 Mär 2023 06:22
Letzte Änderung: 27 Nov 2023 07:36
PPN: 505752093
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen