TU Darmstadt / ULB / TUbiblio

High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys

Fortunato, Nuno M. ; Taubel, Andreas ; Marmodoro, Alberto ; Pfeuffer, Lukas ; Ophale, Ingo ; Ebert, Hebert ; Gutfleisch, Oliver ; Zhang, Hongbin (2023)
High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys.
In: Advanced Science, 2023, 10 (17)
doi: 10.26083/tuprints-00024317
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor‐cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high‐throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M’ = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Fortunato, Nuno M. ; Taubel, Andreas ; Marmodoro, Alberto ; Pfeuffer, Lukas ; Ophale, Ingo ; Ebert, Hebert ; Gutfleisch, Oliver ; Zhang, Hongbin
Art des Eintrags: Zweitveröffentlichung
Titel: High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys
Sprache: Englisch
Publikationsjahr: 24 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 17
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00024317
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24317
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor‐cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high‐throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M’ = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.

Freie Schlagworte: ab initio calculations, energy materials, high‐throughput screening, magnetocaloric effect
ID-Nummer: 2206772
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-243175
Zusätzliche Informationen:

This article also appears in: Hot Topic: Automated Synthesis

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 24 Nov 2023 13:28
Letzte Änderung: 27 Nov 2023 06:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen