Fortunato, Nuno M. ; Taubel, Andreas ; Marmodoro, Alberto ; Pfeuffer, Lukas ; Ophale, Ingo ; Ebert, Hebert ; Gutfleisch, Oliver ; Zhang, Hongbin (2023)
High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys.
In: Advanced Science, 2023, 10 (17)
doi: 10.26083/tuprints-00024317
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor‐cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high‐throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M’ = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Fortunato, Nuno M. ; Taubel, Andreas ; Marmodoro, Alberto ; Pfeuffer, Lukas ; Ophale, Ingo ; Ebert, Hebert ; Gutfleisch, Oliver ; Zhang, Hongbin |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys |
Sprache: | Englisch |
Publikationsjahr: | 24 November 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2023 |
Ort der Erstveröffentlichung: | Weinheim |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Science |
Jahrgang/Volume einer Zeitschrift: | 10 |
(Heft-)Nummer: | 17 |
Kollation: | 11 Seiten |
DOI: | 10.26083/tuprints-00024317 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/24317 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor‐cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high‐throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M’ = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested. |
Freie Schlagworte: | ab initio calculations, energy materials, high‐throughput screening, magnetocaloric effect |
ID-Nummer: | 2206772 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-243175 |
Zusätzliche Informationen: | This article also appears in: Hot Topic: Automated Synthesis |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien |
Hinterlegungsdatum: | 24 Nov 2023 13:28 |
Letzte Änderung: | 27 Nov 2023 06:27 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys. (deposited 24 Nov 2023 13:28) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |