TU Darmstadt / ULB / TUbiblio

High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys

Fortunato, Nuno M. ; Taubel, Andreas ; Marmodoro, Alberto ; Pfeuffer, Lukas ; Ophale, Ingo ; Ebert, Hebert ; Gutfleisch, Oliver ; Zhang, Hongbin (2023)
High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys.
In: Advanced Science, 10 (17)
doi: 10.1002/advs.202206772
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor-cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high-throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M’ = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Fortunato, Nuno M. ; Taubel, Andreas ; Marmodoro, Alberto ; Pfeuffer, Lukas ; Ophale, Ingo ; Ebert, Hebert ; Gutfleisch, Oliver ; Zhang, Hongbin
Art des Eintrags: Bibliographie
Titel: High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys
Sprache: Englisch
Publikationsjahr: 20 April 2023
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 17
DOI: 10.1002/advs.202206772
URL / URN: https://onlinelibrary.wiley.com/doi/10.1002/advs.202206772
Zugehörige Links:
Kurzbeschreibung (Abstract):

Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor-cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high-throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M’ = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.

Freie Schlagworte: ab initio calculations, energy materials, high-throughput screening, magnetocaloric effect
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 04 Okt 2023 12:40
Letzte Änderung: 27 Nov 2023 06:27
PPN: 512033005
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen