TU Darmstadt / ULB / TUbiblio

Lifelong nnU-Net: a framework for standardized medical continual learning

González, Camila ; Ranem, Amin ; Pinto dos Santos, Daniel ; Othman, Ahmed ; Mukhopadhyay, Anirban (2023)
Lifelong nnU-Net: a framework for standardized medical continual learning.
In: Scientific Reports, 13
doi: 10.1038/s41598-023-34484-2
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

As the enthusiasm surrounding Deep Learning grows, both medical practitioners and regulatory bodies are exploring ways to safely introduce image segmentation in clinical practice. One frontier to overcome when translating promising research into the clinical open world is the shift from static to continual learning. Continual learning, the practice of training models throughout their lifecycle, is seeing growing interest but is still in its infancy in healthcare. We present Lifelong nnUNet, a standardized framework that places continual segmentation at the hands of researchers and clinicians. Built on top of the nnU-Net—widely regarded as the best-performing segmenter for multiple medical applications—and equipped with all necessary modules for training and testing models sequentially, we ensure broad applicability and lower the barrier to evaluating new methods in a continual fashion. Our benchmark results across three medical segmentation use cases and five continual learning methods give a comprehensive outlook on the current state of the field and signify a first reproducible benchmark.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): González, Camila ; Ranem, Amin ; Pinto dos Santos, Daniel ; Othman, Ahmed ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Lifelong nnU-Net: a framework for standardized medical continual learning
Sprache: Englisch
Publikationsjahr: 9 Juni 2023
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 13
DOI: 10.1038/s41598-023-34484-2
Kurzbeschreibung (Abstract):

As the enthusiasm surrounding Deep Learning grows, both medical practitioners and regulatory bodies are exploring ways to safely introduce image segmentation in clinical practice. One frontier to overcome when translating promising research into the clinical open world is the shift from static to continual learning. Continual learning, the practice of training models throughout their lifecycle, is seeing growing interest but is still in its infancy in healthcare. We present Lifelong nnUNet, a standardized framework that places continual segmentation at the hands of researchers and clinicians. Built on top of the nnU-Net—widely regarded as the best-performing segmenter for multiple medical applications—and equipped with all necessary modules for training and testing models sequentially, we ensure broad applicability and lower the barrier to evaluating new methods in a continual fashion. Our benchmark results across three medical segmentation use cases and five continual learning methods give a comprehensive outlook on the current state of the field and signify a first reproducible benchmark.

Zusätzliche Informationen:

Art.No.: 9381

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 27 Nov 2023 12:36
Letzte Änderung: 01 Feb 2024 14:51
PPN: 515189855
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen