González, Camila ; Ranem, Amin ; Pinto dos Santos, Daniel ; Othman, Ahmed ; Mukhopadhyay, Anirban (2023)
Lifelong nnU-Net: a framework for standardized medical continual learning.
In: Scientific Reports, 13
doi: 10.1038/s41598-023-34484-2
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
As the enthusiasm surrounding Deep Learning grows, both medical practitioners and regulatory bodies are exploring ways to safely introduce image segmentation in clinical practice. One frontier to overcome when translating promising research into the clinical open world is the shift from static to continual learning. Continual learning, the practice of training models throughout their lifecycle, is seeing growing interest but is still in its infancy in healthcare. We present Lifelong nnUNet, a standardized framework that places continual segmentation at the hands of researchers and clinicians. Built on top of the nnU-Net—widely regarded as the best-performing segmenter for multiple medical applications—and equipped with all necessary modules for training and testing models sequentially, we ensure broad applicability and lower the barrier to evaluating new methods in a continual fashion. Our benchmark results across three medical segmentation use cases and five continual learning methods give a comprehensive outlook on the current state of the field and signify a first reproducible benchmark.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | González, Camila ; Ranem, Amin ; Pinto dos Santos, Daniel ; Othman, Ahmed ; Mukhopadhyay, Anirban |
Art des Eintrags: | Bibliographie |
Titel: | Lifelong nnU-Net: a framework for standardized medical continual learning |
Sprache: | Englisch |
Publikationsjahr: | 9 Juni 2023 |
Verlag: | Springer Nature |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Scientific Reports |
Jahrgang/Volume einer Zeitschrift: | 13 |
DOI: | 10.1038/s41598-023-34484-2 |
Kurzbeschreibung (Abstract): | As the enthusiasm surrounding Deep Learning grows, both medical practitioners and regulatory bodies are exploring ways to safely introduce image segmentation in clinical practice. One frontier to overcome when translating promising research into the clinical open world is the shift from static to continual learning. Continual learning, the practice of training models throughout their lifecycle, is seeing growing interest but is still in its infancy in healthcare. We present Lifelong nnUNet, a standardized framework that places continual segmentation at the hands of researchers and clinicians. Built on top of the nnU-Net—widely regarded as the best-performing segmenter for multiple medical applications—and equipped with all necessary modules for training and testing models sequentially, we ensure broad applicability and lower the barrier to evaluating new methods in a continual fashion. Our benchmark results across three medical segmentation use cases and five continual learning methods give a comprehensive outlook on the current state of the field and signify a first reproducible benchmark. |
Zusätzliche Informationen: | Art.No.: 9381 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 27 Nov 2023 12:36 |
Letzte Änderung: | 01 Feb 2024 14:51 |
PPN: | 515189855 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |