Lutter, Michael ; Ritter, Christian ; Peters, Jan (2023)
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning.
7th International Conference on Learning Representations (ICLR) 2019. New Orleans, Louisiana, United States (06.05.2019-09.05.2019)
doi: 10.26083/tuprints-00020557
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Deep learning has achieved astonishing results on many tasks with large amounts of data and generalization within the proximity of training data. For many important real-world applications, these requirements are unfeasible and additional prior knowledge on the task domain is required to overcome the resulting problems. In particular, learning physics models for model-based control requires robust extrapolation from fewer samples – often collected online in real-time – and model errors may lead to drastic damages of the system.
Directly incorporating physical insight has enabled us to obtain a novel deep model learning approach that extrapolates well while requiring fewer samples. As a first example, we propose Deep Lagrangian Networks (DeLaN) as a deep network structure upon which Lagrangian Mechanics have been imposed. DeLaN can learn the equations of motion of a mechanical system (i.e., system dynamics) with a deep network efficiently while ensuring physical plausibility.
The resulting DeLaN network performs very well at robot tracking control. The proposed method did not only outperform previous model learning approaches at learning speed but exhibits substantially improved and more robust extrapolation to novel trajectories and learns online in real-time.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Lutter, Michael ; Ritter, Christian ; Peters, Jan |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning |
Sprache: | Englisch |
Publikationsjahr: | 17 Oktober 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2019 |
Kollation: | 17 Seiten |
Veranstaltungstitel: | 7th International Conference on Learning Representations (ICLR) 2019 |
Veranstaltungsort: | New Orleans, Louisiana, United States |
Veranstaltungsdatum: | 06.05.2019-09.05.2019 |
DOI: | 10.26083/tuprints-00020557 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/20557 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Deep learning has achieved astonishing results on many tasks with large amounts of data and generalization within the proximity of training data. For many important real-world applications, these requirements are unfeasible and additional prior knowledge on the task domain is required to overcome the resulting problems. In particular, learning physics models for model-based control requires robust extrapolation from fewer samples – often collected online in real-time – and model errors may lead to drastic damages of the system. Directly incorporating physical insight has enabled us to obtain a novel deep model learning approach that extrapolates well while requiring fewer samples. As a first example, we propose Deep Lagrangian Networks (DeLaN) as a deep network structure upon which Lagrangian Mechanics have been imposed. DeLaN can learn the equations of motion of a mechanical system (i.e., system dynamics) with a deep network efficiently while ensuring physical plausibility. The resulting DeLaN network performs very well at robot tracking control. The proposed method did not only outperform previous model learning approaches at learning speed but exhibits substantially improved and more robust extrapolation to novel trajectories and learns online in real-time. |
Freie Schlagworte: | Deep Model Learning, Robot Control |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-205579 |
Zusätzliche Informationen: | TL;DR: This paper introduces a physics prior for Deep Learning and applies the resulting network topology for model-based control. |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Intelligente Autonome Systeme Zentrale Einrichtungen Zentrale Einrichtungen > Centre for Cognitive Science (CCS) |
TU-Projekte: | EC/H2020|640554|SKILLS4ROBOTS |
Hinterlegungsdatum: | 17 Okt 2023 11:37 |
Letzte Änderung: | 26 Jul 2024 09:11 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning. (deposited 17 Okt 2023 11:37) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |