TU Darmstadt / ULB / TUbiblio

Direct Observation of Quadrupolar Strain Fields forming a Shear Band in Metallic Glasses

Kang, Sangjun ; Wang, Di ; Caron, Arnaud ; Minnert, Christian ; Durst, Karsten ; Kübel, Christian ; Mu, Xiaoke (2023)
Direct Observation of Quadrupolar Strain Fields forming a Shear Band in Metallic Glasses.
In: Advanced Materials, 2023, 35 (25)
doi: 10.26083/tuprints-00024301
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

For decades, scanning/transmission electron microscopy (S/TEM) techniques have been employed to analyze shear bands in metallic glasses and understand their formation in order to improve the mechanical properties of metallic glasses. However, due to a lack of direct information in reciprocal space, conventional S/TEM cannot characterize the local strain and atomic structure of amorphous materials, which are key to describe the deformation of glasses. For this work, 4‐dimensional‐STEM (4D‐STEM) is applied to map and directly correlate the local strain and the atomic structure at the nanometer scale in deformed metallic glasses. Residual strain fields are observed with quadrupolar symmetry concentrated at dilated Eshelby inclusions. The strain fields percolate in a vortex‐like manner building up the shear band. This provides a new understanding of the formation of shear bands in metallic glass.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Kang, Sangjun ; Wang, Di ; Caron, Arnaud ; Minnert, Christian ; Durst, Karsten ; Kübel, Christian ; Mu, Xiaoke
Art des Eintrags: Zweitveröffentlichung
Titel: Direct Observation of Quadrupolar Strain Fields forming a Shear Band in Metallic Glasses
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 35
(Heft-)Nummer: 25
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00024301
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24301
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

For decades, scanning/transmission electron microscopy (S/TEM) techniques have been employed to analyze shear bands in metallic glasses and understand their formation in order to improve the mechanical properties of metallic glasses. However, due to a lack of direct information in reciprocal space, conventional S/TEM cannot characterize the local strain and atomic structure of amorphous materials, which are key to describe the deformation of glasses. For this work, 4‐dimensional‐STEM (4D‐STEM) is applied to map and directly correlate the local strain and the atomic structure at the nanometer scale in deformed metallic glasses. Residual strain fields are observed with quadrupolar symmetry concentrated at dilated Eshelby inclusions. The strain fields percolate in a vortex‐like manner building up the shear band. This provides a new understanding of the formation of shear bands in metallic glass.

Freie Schlagworte: 4D‐STEM, Eshelby inclusions, metallic glass, shear bands, strain fields
ID-Nummer: 2212086
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-243019
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 07 Aug 2023 08:08
Letzte Änderung: 09 Aug 2023 11:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen