Schäfer, Kilian ; Lutzi, Matthias ; Khan, Muhammad Bilal ; Schäfer, Lukas ; Skokov, Konstantin P. ; Dirba, Imants ; Bruns, Sebastian ; Valizadeh, Iman ; Weeger, Oliver ; Hartmann, Claas ; Kupnik, Mario ; Adabifiroozjaei, Esmaeil ; Molina-Luna, Leopoldo ; Gutfleisch, Oliver (2023)
Local stiffness tailoring of magneto-active composites produced by laser powder bed fusion.
doi: 10.48550/arXiv.2305.02643
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Additive manufacturing technologies allow the fabrication of complex and bioinspired shapes of magneto-responsive materials which have various applications in soft robotics. The fabrication of these composites with gradients in mechanical properties offers new possibilities in the field of magneto-active materials. However, this usually requires complex multi-material printing steps. Here, a single-step laser powder bed fusion (LPBF) process is presented that enables the local adjustement of the mechanical stiffness of a magneto-active composite. The application of locally different laser parameters, during the processing of a composite consisting of thermoplastic polyurethane and atomized magnetic powder based on hard magnetic Nd-Fe-B, can change the stiffness of the composite from 2 to 22 MPa. Different magneto-responsive actuators, with locally adjusted stiffnesses, are fabricated and their magnetic properties are investigated. The enhanced response of actuators with locally adjusted mechanical properties is demonstrated in comparison to homogenous actuators with the same geometry. As demonstraction for a biomedical application, a locally adjusted stent which can meet requirements for geometry and local stiffness speficially for a individual anatomy and disease is demonstrated. Further implementation of the proposed process in these areas will help to make progress in the integration of soft and rigid components in various applications such as soft robotics and locomotion assistance devices. The presented method shows a roadmap to create functionally graded materials with LPBF, not only in magneto-active materials, but also in various other structural and functional materials.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Schäfer, Kilian ; Lutzi, Matthias ; Khan, Muhammad Bilal ; Schäfer, Lukas ; Skokov, Konstantin P. ; Dirba, Imants ; Bruns, Sebastian ; Valizadeh, Iman ; Weeger, Oliver ; Hartmann, Claas ; Kupnik, Mario ; Adabifiroozjaei, Esmaeil ; Molina-Luna, Leopoldo ; Gutfleisch, Oliver |
Art des Eintrags: | Bibliographie |
Titel: | Local stiffness tailoring of magneto-active composites produced by laser powder bed fusion |
Sprache: | Englisch |
Publikationsjahr: | 4 Mai 2023 |
DOI: | 10.48550/arXiv.2305.02643 |
URL / URN: | http://arxiv.org/abs/2305.02643 |
Kurzbeschreibung (Abstract): | Additive manufacturing technologies allow the fabrication of complex and bioinspired shapes of magneto-responsive materials which have various applications in soft robotics. The fabrication of these composites with gradients in mechanical properties offers new possibilities in the field of magneto-active materials. However, this usually requires complex multi-material printing steps. Here, a single-step laser powder bed fusion (LPBF) process is presented that enables the local adjustement of the mechanical stiffness of a magneto-active composite. The application of locally different laser parameters, during the processing of a composite consisting of thermoplastic polyurethane and atomized magnetic powder based on hard magnetic Nd-Fe-B, can change the stiffness of the composite from 2 to 22 MPa. Different magneto-responsive actuators, with locally adjusted stiffnesses, are fabricated and their magnetic properties are investigated. The enhanced response of actuators with locally adjusted mechanical properties is demonstrated in comparison to homogenous actuators with the same geometry. As demonstraction for a biomedical application, a locally adjusted stent which can meet requirements for geometry and local stiffness speficially for a individual anatomy and disease is demonstrated. Further implementation of the proposed process in these areas will help to make progress in the integration of soft and rigid components in various applications such as soft robotics and locomotion assistance devices. The presented method shows a roadmap to create functionally graded materials with LPBF, not only in magneto-active materials, but also in various other structural and functional materials. |
Freie Schlagworte: | condensed matter, materials science, physics - applied physics |
Zusätzliche Informationen: | arXiv:2305.02643 cond-mat, physics:physics |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS) 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik |
Hinterlegungsdatum: | 30 Jun 2023 09:42 |
Letzte Änderung: | 10 Jul 2023 09:36 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |