TU Darmstadt / ULB / TUbiblio

SURE-Val : safe urban relevance extension and validation

Storms, Kai ; Mori, Ken ; Peters, Steven (2023)
SURE-Val : safe urban relevance extension and validation.
15. Uni-DAS e.V. Workshop Fahrerassistenz und automatisiertes Fahren. Berkheim (24.10.2023-26.10.2023)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

To evaluate perception components of an automated driving system, it is necessary to define the relevant objects. While the urban domain is popular among perception datasets, relevance is insufficiently specified for this domain. Therefore, this work adopts an existing method to define relevance in the highway domain and expands it to the urban domain. While different conceptualizations and definitions of relevance are present in literature, there is a lack of methods to validate these definitions. Therefore, this work presents a novel relevance validation method leveraging a motion prediction component. The validation leverages the idea that removing irrelevant objects should not influence a prediction component which reflects human driving behavior. The influence on the prediction is quantified by considering the statistical distribution of prediction performance across a large-scale dataset. The validation procedure is verified using criteria specifically designed to exclude relevant objects. The validation method is successfully applied to the relevance criteria from this work, thus supporting their validity.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Storms, Kai ; Mori, Ken ; Peters, Steven
Art des Eintrags: Bibliographie
Titel: SURE-Val : safe urban relevance extension and validation
Sprache: Englisch
Publikationsjahr: 23 Juni 2023
Ort: Darmstadt
Verlag: Uni-DAS e.V.
Buchtitel: 15. Workshop Fahrerassistenz und automatisiertes Fahren FAS 2023
Veranstaltungstitel: 15. Uni-DAS e.V. Workshop Fahrerassistenz und automatisiertes Fahren
Veranstaltungsort: Berkheim
Veranstaltungsdatum: 24.10.2023-26.10.2023
URL / URN: https://www.uni-das.de/fas-workshop/2023.html
Kurzbeschreibung (Abstract):

To evaluate perception components of an automated driving system, it is necessary to define the relevant objects. While the urban domain is popular among perception datasets, relevance is insufficiently specified for this domain. Therefore, this work adopts an existing method to define relevance in the highway domain and expands it to the urban domain. While different conceptualizations and definitions of relevance are present in literature, there is a lack of methods to validate these definitions. Therefore, this work presents a novel relevance validation method leveraging a motion prediction component. The validation leverages the idea that removing irrelevant objects should not influence a prediction component which reflects human driving behavior. The influence on the prediction is quantified by considering the statistical distribution of prediction performance across a large-scale dataset. The validation procedure is verified using criteria specifically designed to exclude relevant objects. The validation method is successfully applied to the relevance criteria from this work, thus supporting their validity.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD)
TU-Projekte: Bund/BMWi|19A19002S|VVMethoden
Hinterlegungsdatum: 09 Nov 2023 12:42
Letzte Änderung: 09 Nov 2023 12:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen