Storms, Kai ; Mori, Ken ; Peters, Steven (2023)
SURE-Val : safe urban relevance extension and validation.
15. Uni-DAS e.V. Workshop Fahrerassistenz und automatisiertes Fahren. Berkheim (24.10.2023-26.10.2023)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
To evaluate perception components of an automated driving system, it is necessary to define the relevant objects. While the urban domain is popular among perception datasets, relevance is insufficiently specified for this domain. Therefore, this work adopts an existing method to define relevance in the highway domain and expands it to the urban domain. While different conceptualizations and definitions of relevance are present in literature, there is a lack of methods to validate these definitions. Therefore, this work presents a novel relevance validation method leveraging a motion prediction component. The validation leverages the idea that removing irrelevant objects should not influence a prediction component which reflects human driving behavior. The influence on the prediction is quantified by considering the statistical distribution of prediction performance across a large-scale dataset. The validation procedure is verified using criteria specifically designed to exclude relevant objects. The validation method is successfully applied to the relevance criteria from this work, thus supporting their validity.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Storms, Kai ; Mori, Ken ; Peters, Steven |
Art des Eintrags: | Bibliographie |
Titel: | SURE-Val : safe urban relevance extension and validation |
Sprache: | Englisch |
Publikationsjahr: | 23 Juni 2023 |
Ort: | Darmstadt |
Verlag: | Uni-DAS e.V. |
Buchtitel: | 15. Workshop Fahrerassistenz und automatisiertes Fahren FAS 2023 |
Veranstaltungstitel: | 15. Uni-DAS e.V. Workshop Fahrerassistenz und automatisiertes Fahren |
Veranstaltungsort: | Berkheim |
Veranstaltungsdatum: | 24.10.2023-26.10.2023 |
URL / URN: | https://www.uni-das.de/fas-workshop/2023.html |
Kurzbeschreibung (Abstract): | To evaluate perception components of an automated driving system, it is necessary to define the relevant objects. While the urban domain is popular among perception datasets, relevance is insufficiently specified for this domain. Therefore, this work adopts an existing method to define relevance in the highway domain and expands it to the urban domain. While different conceptualizations and definitions of relevance are present in literature, there is a lack of methods to validate these definitions. Therefore, this work presents a novel relevance validation method leveraging a motion prediction component. The validation leverages the idea that removing irrelevant objects should not influence a prediction component which reflects human driving behavior. The influence on the prediction is quantified by considering the statistical distribution of prediction performance across a large-scale dataset. The validation procedure is verified using criteria specifically designed to exclude relevant objects. The validation method is successfully applied to the relevance criteria from this work, thus supporting their validity. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD) |
TU-Projekte: | Bund/BMWi|19A19002S|VVMethoden |
Hinterlegungsdatum: | 09 Nov 2023 12:42 |
Letzte Änderung: | 09 Nov 2023 12:58 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |