TU Darmstadt / ULB / TUbiblio

Disentanglement Enables Cross-Domain Hippocampus Segmentation

Kalkhof, John ; Gonzalez, Camila ; Mukhopadhyay, Anirban (2022)
Disentanglement Enables Cross-Domain Hippocampus Segmentation.
19th International Symposium on Biomedical Imaging. Kolkata, India (28.03.2022-31.03.2022)
doi: 10.1109/ISBI52829.2022.9761560
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Limited amount of labelled training data are a common problem in medical imaging. This makes it difficult to train a well-generalised model and therefore often leads to failure in unknown domains. Hippocampus segmentation from magnetic resonance imaging (MRI) scans is critical for the diagnosis and treatment of neuropsychatric disorders. Domain differences in contrast or shape can significantly affect segmentation. We address this issue by disentangling a T1- weighted MRI image into its content and domain. This separation enables us to perform a domain transfer and thus convert data from new sources into the training domain. This step thus simplifies the segmentation problem, resulting in higher quality segmentations. We achieve the disentanglement with the proposed novel methodology ’Content Domain Disentanglement GAN’, and we propose to retrain the UNet on the transformed outputs to deal with GAN-specific artefacts. With these changes, we are able to improve performance on unseen domains by 6-13% and outperform stateof-the-art domain transfer methods.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Kalkhof, John ; Gonzalez, Camila ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Disentanglement Enables Cross-Domain Hippocampus Segmentation
Sprache: Englisch
Publikationsjahr: 26 April 2022
Ort: Piscataway, NJ
Verlag: IEEE
Buchtitel: IEEE ISBI 2022 Proceedings: 2022 IEEE International Symposium on Biomedical Imaging
Veranstaltungstitel: 19th International Symposium on Biomedical Imaging
Veranstaltungsort: Kolkata, India
Veranstaltungsdatum: 28.03.2022-31.03.2022
DOI: 10.1109/ISBI52829.2022.9761560
Kurzbeschreibung (Abstract):

Limited amount of labelled training data are a common problem in medical imaging. This makes it difficult to train a well-generalised model and therefore often leads to failure in unknown domains. Hippocampus segmentation from magnetic resonance imaging (MRI) scans is critical for the diagnosis and treatment of neuropsychatric disorders. Domain differences in contrast or shape can significantly affect segmentation. We address this issue by disentangling a T1- weighted MRI image into its content and domain. This separation enables us to perform a domain transfer and thus convert data from new sources into the training domain. This step thus simplifies the segmentation problem, resulting in higher quality segmentations. We achieve the disentanglement with the proposed novel methodology ’Content Domain Disentanglement GAN’, and we propose to retrain the UNet on the transformed outputs to deal with GAN-specific artefacts. With these changes, we are able to improve performance on unseen domains by 6-13% and outperform stateof-the-art domain transfer methods.

Freie Schlagworte: feature disentanglement, domain generalisation, distribution shift
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 15 Jun 2023 07:52
Letzte Änderung: 13 Jul 2023 15:49
PPN: 509626203
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen