TU Darmstadt / ULB / TUbiblio

Quality Monitoring of Federated Covid-19 Lesion Segmentation

González, Camila ; Harder, Christian L. ; Ranem, Amin ; Fischbach, Ricarda ; Kaltenborn, Isabel J. ; Dadras, Armin ; Bucher, Andreas M. ; Mukhopadhyay, Anirban (2022)
Quality Monitoring of Federated Covid-19 Lesion Segmentation.
Bildverarbeitung für die Medizin 2022. Heidelberg, Germany (26.06.2022-28.06.2022)
doi: 10.1007/978-3-658-36932-3_8
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Federated Learning is the most promising way to train robust Deep Learning models for the segmentation of Covid-19-related findings in chest CTs. By learning in a decentralized fashion, heterogeneous data can be leveraged from a variety of sources and acquisition protocols whilst ensuring patient privacy. It is, however, crucial to continuously monitor the performance of the model. Yet when it comes to the segmentation of diffuse lung lesions, a quick visual inspection is not enough to assess the quality, and thorough monitoring of all network outputs by expert radiologists is not feasible. In this work, we present an array of lightweight metrics that can be calculated locally in each hospital and then aggregated for central monitoring of a federated system. Our linear model detects over 70% of low-quality segmentations on an out-of-distribution dataset and thus reliably signals a decline in model performance.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): González, Camila ; Harder, Christian L. ; Ranem, Amin ; Fischbach, Ricarda ; Kaltenborn, Isabel J. ; Dadras, Armin ; Bucher, Andreas M. ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Quality Monitoring of Federated Covid-19 Lesion Segmentation
Sprache: Englisch
Publikationsjahr: 5 April 2022
Verlag: Springer
Buchtitel: Bildverarbeitung für die Medizin 2022: Proceedings, German Workshop on Medical Image Computing
Reihe: Informatik aktuell
Veranstaltungstitel: Bildverarbeitung für die Medizin 2022
Veranstaltungsort: Heidelberg, Germany
Veranstaltungsdatum: 26.06.2022-28.06.2022
DOI: 10.1007/978-3-658-36932-3_8
Kurzbeschreibung (Abstract):

Federated Learning is the most promising way to train robust Deep Learning models for the segmentation of Covid-19-related findings in chest CTs. By learning in a decentralized fashion, heterogeneous data can be leveraged from a variety of sources and acquisition protocols whilst ensuring patient privacy. It is, however, crucial to continuously monitor the performance of the model. Yet when it comes to the segmentation of diffuse lung lesions, a quick visual inspection is not enough to assess the quality, and thorough monitoring of all network outputs by expert radiologists is not feasible. In this work, we present an array of lightweight metrics that can be calculated locally in each hospital and then aggregated for central monitoring of a federated system. Our linear model detects over 70% of low-quality segmentations on an out-of-distribution dataset and thus reliably signals a decline in model performance.

Zusätzliche Informationen:

German Workshop on Medical Image Computing

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 15 Jun 2023 07:49
Letzte Änderung: 05 Mär 2024 10:09
PPN: 516005979
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen