TU Darmstadt / ULB / TUbiblio

Task-Agnostic Continual Hippocampus Segmentation for Smooth Population Shifts

González, Camila ; Ranem, Amin ; Othman, Ahmed ; Mukhopadhyay, Anirban (2022)
Task-Agnostic Continual Hippocampus Segmentation for Smooth Population Shifts.
4th MICCAI workshop on Domain Adaptation and Representation Transfer. Singapore (22.09.2022-22.09.2022)
doi: 10.1007/978-3-031-16852-9_11
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Most continual learning methods are validated in settings where task boundaries are clearly defined and task identity information is available during training and testing. We explore how such methods perform in a task-agnostic setting that more closely resembles dynamic clinical environments with gradual population shifts. We propose ODEx, a holistic solution that combines out-of-distribution detection with continual learning techniques. Validation on two scenarios of hippocampus segmentation shows that our proposed method reliably maintains performance on earlier tasks without losing plasticity.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): González, Camila ; Ranem, Amin ; Othman, Ahmed ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Task-Agnostic Continual Hippocampus Segmentation for Smooth Population Shifts
Sprache: Englisch
Publikationsjahr: 2022
Verlag: Springer
Buchtitel: Domain Adaptation and Representation Transfer
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 13542
Veranstaltungstitel: 4th MICCAI workshop on Domain Adaptation and Representation Transfer
Veranstaltungsort: Singapore
Veranstaltungsdatum: 22.09.2022-22.09.2022
DOI: 10.1007/978-3-031-16852-9_11
Kurzbeschreibung (Abstract):

Most continual learning methods are validated in settings where task boundaries are clearly defined and task identity information is available during training and testing. We explore how such methods perform in a task-agnostic setting that more closely resembles dynamic clinical environments with gradual population shifts. We propose ODEx, a holistic solution that combines out-of-distribution detection with continual learning techniques. Validation on two scenarios of hippocampus segmentation shows that our proposed method reliably maintains performance on earlier tasks without losing plasticity.

Freie Schlagworte: Continual learning, Lifelong learning, Distribution shift
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 15 Jun 2023 07:43
Letzte Änderung: 27 Feb 2024 12:55
PPN: 515843296
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen