TU Darmstadt / ULB / TUbiblio

Improving Robustness and Calibration in Ensembles with Diversity Regularization

Mehrtens, Hendrik Alexander ; Gonzalez, Camila ; Mukhopadhyay, Anirban (2022)
Improving Robustness and Calibration in Ensembles with Diversity Regularization.
4th DAGM German Conference on Pattern Recognition. Konstanz, Germany (27.09.2022-30.09.2022)
doi: 10.1007/978-3-031-16788-1_3
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Calibration and uncertainty estimation are crucial topics in high-risk environments. Following the recent interest in the diversity of ensembles, we systematically evaluate the viability of explicitly regularizing ensemble diversity to improve robustness and calibration on in-distribution data as well as under dataset shift. We introduce a new diversity regularizer for classification tasks that uses outof-distribution samples and increases the overall accuracy, calibration and out-of-distribution detection capabilities of ensembles. We demonstrate that diversity regularization is highly beneficial in architectures where weights are partially shared between the individual members and even allows to use fewer ensemble members to reach the same level of robustness. Experiments on CIFAR-10, CIFAR-100, and SVHN show that regularizing diversity can have a significant impact on calibration and robustness, as well as out-of-distribution detection.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Mehrtens, Hendrik Alexander ; Gonzalez, Camila ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Improving Robustness and Calibration in Ensembles with Diversity Regularization
Sprache: Englisch
Publikationsjahr: 20 September 2022
Verlag: Springer
Buchtitel: Pattern Recognition: 44th DAGM German Conference
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 13485
Veranstaltungstitel: 4th DAGM German Conference on Pattern Recognition
Veranstaltungsort: Konstanz, Germany
Veranstaltungsdatum: 27.09.2022-30.09.2022
DOI: 10.1007/978-3-031-16788-1_3
Kurzbeschreibung (Abstract):

Calibration and uncertainty estimation are crucial topics in high-risk environments. Following the recent interest in the diversity of ensembles, we systematically evaluate the viability of explicitly regularizing ensemble diversity to improve robustness and calibration on in-distribution data as well as under dataset shift. We introduce a new diversity regularizer for classification tasks that uses outof-distribution samples and increases the overall accuracy, calibration and out-of-distribution detection capabilities of ensembles. We demonstrate that diversity regularization is highly beneficial in architectures where weights are partially shared between the individual members and even allows to use fewer ensemble members to reach the same level of robustness. Experiments on CIFAR-10, CIFAR-100, and SVHN show that regularizing diversity can have a significant impact on calibration and robustness, as well as out-of-distribution detection.

Freie Schlagworte: Diversity, Ensembles, Robustness, Calibration
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 06 Jun 2023 14:02
Letzte Änderung: 02 Aug 2023 14:15
PPN: 510089844
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen